83 research outputs found

    Ensemble Support Vector Machine Models of Radiation-Induced Lung Injury Risk

    Get PDF
    Patients undergoing radiation therapy can develop a potentially fatal inflammation of the lungs known as radiation pneumonitis: RP). In practice, modeling RP factors is difficult because existing data are under-sampled and imbalanced. Support vector machines: SVMs), a class of statistical learning methods that implicitly maps data into a higher dimensional space, is one machine learning method that recently has been applied to the RP problem with encouraging results. In this thesis, we present and evaluate an ensemble SVM method of modeling radiation pneumonitis. The method internalizes kernel/model parameter selection into model building and enables feature scaling via Olivier Chapelle\u27s method. We show that the ensemble method provides statistically significant increases to the cross-folded area under the receiver operating characteristic curve while maintaining model parsimony. Finally, we extend our model with John C. Platt\u27s method to support non-binary outcomes in order to augment clinical relevancy

    Quantitative Analysis of Radiation-Associated Parenchymal Lung Change

    Get PDF
    Radiation-induced lung damage (RILD) is a common consequence of thoracic radiotherapy (RT). We present here a novel classification of the parenchymal features of RILD. We developed a deep learning algorithm (DLA) to automate the delineation of 5 classes of parenchymal texture of increasing density. 200 scans were used to train and validate the network and the remaining 30 scans were used as a hold-out test set. The DLA automatically labelled the data with Dice Scores of 0.98, 0.43, 0.26, 0.47 and 0.92 for the 5 respective classes. Qualitative evaluation showed that the automated labels were acceptable in over 80% of cases for all tissue classes, and achieved similar ratings to the manual labels. Lung registration was performed and the effect of radiation dose on each tissue class and correlation with respiratory outcomes was assessed. The change in volume of each tissue class over time generated by manual and automated segmentation was calculated. The 5 parenchymal classes showed distinct temporal patterns We quantified the volumetric change in textures after radiotherapy and correlate these with radiotherapy dose and respiratory outcomes. The effect of local dose on tissue class revealed a strong dose-dependent relationship We have developed a novel classification of parenchymal changes associated with RILD that show a convincing dose relationship. The tissue classes are related to both global and local dose metrics, and have a distinct evolution over time. Although less strong, there is a relationship between the radiological texture changes we can measure and respiratory outcomes, particularly the MRC score which directly represents a patient’s functional status. We have demonstrated the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible

    Improving radiotherapy using image analysis and machine learning

    Get PDF
    With ever increasing advancements in imaging, there is an increasing abundance of images being acquired in the clinical environment. However, this increase in information can be a burden as well as a blessing as it may require significant amounts of time to interpret the information contained in these images. Computer assisted evaluation is one way in which better use could be made of these images. This thesis presents the combination of texture analysis of images acquired during the treatment of cancer with machine learning in order to improve radiotherapy. The first application is to the prediction of radiation induced pneumonitis. In 13- 37% of cases, lung cancer patients treated with radiotherapy develop radiation induced lung disease, such as radiation induced pneumonitis. Three dimensional texture analysis, combined with patient-specific clinical parameters, were used to compute unique features. On radiotherapy planning CT data of 57 patients, (14 symptomatic, 43 asymptomatic), a Support Vector Machine (SVM) obtained an area under the receiver operator curve (AUROC) of 0.873 with sensitivity, specificity and accuracy of 92%, 72% and 87% respectively. Furthermore, it was demonstrated that a Decision Tree classifier was capable of a similar level of performance using sub-regions of the lung volume. The second application is related to prostate cancer identification. T2 MRI scans are used in the diagnosis of prostate cancer and in the identification of the primary cancer within the prostate gland. The manual identification of the cancer relies on the assessment of multiple scans and the integration of clinical information by a clinician. This requires considerable experience and time. As MRI becomes more integrated within the radiotherapy work flow and as adaptive radiotherapy (where the treatment plan is modified based on multi-modality image information acquired during or between RT fractions) develops it is timely to develop automatic segmentation techniques for reliably identifying cancerous regions. In this work a number of texture features were coupled with a supervised learning model for the automatic segmentation of the main cancerous focus in the prostate - the focal lesion. A mean AUROC of 0.713 was demonstrated with 10-fold stratified cross validation strategy on an aggregate data set. On a leave one case out basis a mean AUROC of 0.60 was achieved which resulted in a mean DICE coefficient of 0.710. These results showed that is was possible to delineate the focal lesion in the majority (11) of the 14 cases used in the study

    Machine learning using radiomics and dosiomics for normal tissue complication probability modeling of radiation-induced xerostomia

    Get PDF
    In routine clinical practice, the risk of xerostomia is typically managed by limiting the mean radiation dose to parotid glands. This approach used to give satisfying results. In recent years, however, several studies have reported mean-dose models to fail in the recognition of xerostomia risk. This can be explained by a strong improvement of overall dose conformality in radiotherapy due to recent technological advances, and thereby a substantial reduction of the mean dose to parotid glands. This thesis investigated novel approaches to building reliable normal tissue complication probability (NTCP) models of xerostomia in this context. For the purpose of the study, a cohort of 153 head-and-neck cancer patients treated with radiotherapy at Heidelberg University Hospital was retrospectively collected. The predictive performance of the mean-dose to parotid glands was evaluated with the Lyman-Kutcher-Burman (LKB) model. In order to examine the individual predictive power of predictors describing parotid shape (radiomics), dose shape (dosiomics), and demographic characteristics, a total of 61 different features was defined and extracted from the DICOM files. These included the patient’s age and sex, parotid shape features, features related to the dose-volume histogram, the mean dose to subvolumes of parotid glands, spatial dose gradients, and three-dimensional dose moments. In the multivariate analysis, a variety of machine learning algorithms was evaluated: 1) classification methods, that discriminated patients between a high and a low risk of complication, 2) feature selection techniques, that aimed to select a number of highly informative covariates from a large set of predictors, 3) sampling methods, that reduced the class imbalance, 4) data cleaning methods, that reduced noise in the data set. The predictive performance of the models was validated internally, using nested cross-validation, and externally, using an independent patient cohort from the PARSPORT clinical trial. The LKB model showed fairly good performance on mild-to-severe (G1+) xerostomia predictions. The corresponding dose-response curve revealed that even small doses to parotid glands increase the risk of xerostomia and should be kept as low as possible. For the patients who did develop moderate-to-severe (G2+) xerostomia, the mean dose was not an informative predictor, even though the efficient sparing of parotid glands allowed to achieve low G2+ xerostomia rates. The features describing the shape of a parotid gland and the shape of a dose proved to be highly predictive of xerostomia. In particular, the parotid volume and the spatial dose gradients in the transverse plane explained xerostomia well. The results of the machine learning algorithms comparison showed that a particular choice of a classifier and a feature selection method can significantly influence predictive performance of the NTCP model. In general, support vector machines and extra-trees achieved top performance, especially for the endpoints with a large number of observations. For the endpoints with a smaller number of observations, simple logistic regression often performed on a par with the top-ranking machine learning algorithms. The external validation showed that the analyzed multivariate models did not generalize well to the PARSPORT cohort. The only features that were predictive of xerostomia both in the Heidelberg (HD) and the PARSPORT cohort were the spatial dose gradients in the right-left and the anterior-posterior directions. Substantial differences in the distribution of covariates between the two cohorts were observed, which may be one of the reasons for the weak generalizability of the HD models. The results presented in this thesis undermine the applicability of NTCP models of xerostomia based only on the mean dose to parotid glands in highly conformal radiotherapy treatments. The spatial dose gradients in the left-right and the anterior-posterior directions proved to be predictive of xerostomia both in the HD and the PARSPORT cohort. This finding is especially important as it is not limited to a single cohort but describes a general pattern present in two independent data sets. The performance of the sophisticated machine learning methods may indicate a need for larger patient cohorts in studies on NTCP models in order to fully benefit from their advantages. Last but not least, the observed covariate-shift between the HD and the PARSPORT cohort motivates, in the author’s opinion, a need for reporting information about the covariate distribution when publishing novel NTCP models

    Virtual patient-specific treatment verification using machine learning methods to assist the dose deliverability evaluation of radiotherapy prostate plans

    Get PDF
    Machine Learning (ML) methods represent a potential tool to support and optimize virtual patient-specific plan verifications within radiotherapy workflows. However, previously reported applications did not consider the actual physical implications in the predictor’s quality and modelperformance and did not report the implementation pertinence nor their limitations. Therefore, the main goal of this thesis was to predict dose deliverability using different ML models and input predictor features, analysing the physical aspects involved in the predictions to propose areliable decision-support tool for virtual patient-specific plan verification protocols. Among the principal predictors explored in this thesis, numerical and high-dimensional features based on modulation complexity, treatment-unit parameters, and dosimetric plan parameters were all implemented by designing random forest (RF), extreme gradient boosting (XG-Boost), neural networks (NN), and convolutional neural networks (CNN) models to predict gamma passing rates (GPR) for prostate treatments. Accordingly, this research highlights three principal findings. (1) The dataset composition's heterogeneity directly impacts the quality of the predictor features and, subsequently, the model performance. (2) The models based on automatic extracted features methods (CNN models) of multi-leaf-collimator modulation maps (MM) presented a more independent and transferable prediction performance. Furthermore, (3) ML algorithms incorporated in radiotherapy workflows for virtual plan verification are required to retrieve treatment plan parameters associated with the prediction to support themodel's reliability and stability. Finally, this thesis presents how the most relevant automatically extracted features from the activation maps were considered to suggest an alternative decision support tool to comprehensively evaluate the causes of the predicted dose deliverability

    Evaluating and Improving 4D-CT Image Segmentation for Lung Cancer Radiotherapy

    Get PDF
    Lung cancer is a high-incidence disease with low survival despite surgical advances and concurrent chemo-radiotherapy strategies. Image-guided radiotherapy provides for treatment measures, however, significant challenges exist for imaging, treatment planning, and delivery of radiation due to the influence of respiratory motion. 4D-CT imaging is capable of improving image quality of thoracic target volumes influenced by respiratory motion. 4D-CT-based treatment planning strategies requires highly accurate anatomical segmentation of tumour volumes for radiotherapy treatment plan optimization. Variable segmentation of tumour volumes significantly contributes to uncertainty in radiotherapy planning due to a lack of knowledge regarding the exact shape of the lesion and difficulty in quantifying variability. As image-segmentation is one of the earliest tasks in the radiotherapy process, inherent geometric uncertainties affect subsequent stages, potentially jeopardizing patient outcomes. Thus, this work assesses and suggests strategies for mitigation of segmentation-related geometric uncertainties in 4D-CT-based lung cancer radiotherapy at pre- and post-treatment planning stages
    • …
    corecore