729 research outputs found

    Dynamic Ensemble Selection with Regional Expertise

    Get PDF
    Many recent works have shown that ensemble methods yield better generalizability over single classifier approach by aggregating the decisions of all base learners in machine learning tasks. To address the redundancy and inaccuracy issues with the base learners in ensemble methods, classifier/ensemble selection methods have been proposed to select one single classifier or an ensemble (a subset of all base learners) to classify a query pattern. This final classifier or ensemble is determined either statically before prediction or dynamically for every query pattern during prediction. Static selection approaches select classifier and ensemble by evaluating classifiers in terms of accuracy and diversity. While dynamic classifier/ensemble selection (DCS, DES) methods incorporate local information for a dedicated classifier/ensemble to each query pattern. Our work focuses on DES by proposing a new DES framework — DES with Regional Expertise (DES-RE). The success of a DES system lies in two factors: the quality of base learners and the optimality of ensemble selection. DES-RE proposed in our work addresses these two challenges respectively. 1) Local expertise enhancement. A novel data sampling and weighting strategy that combines the advantages of bagging and boosting is employed to increase the local expertise of the base learners in order to facilitate the later ensemble selection. 2) Competence region optimization. DES-RE tries to learn a distance metric to form better competence regions (aka neighborhood) that promote strong base learners with respect to a specific query pattern. In addition to perform local expertise enhancement and competence region optimization independently, we proposed an expectation–maximization (EM) framework that combines the two procedures. For all the proposed algorithms, extensive simulations are conducted to validate their performances

    Classification of Acute Lymphocytic Leukemic Blood Cell Images using Hybrid CNN-Enhanced Ensemble SVM Models and Machine Learning Classifiers

    Get PDF
    Acute Lymphocytic Leukemia is a dangerous kind of malignant cancer caused due to the overproduction of white blood cells. The white blood cells in our body are responsible for fighting against infections, if the WBC increases the immunity will decrease and it would lead to serious health conditions. Malignant cancers such as ALL is life threatening if the disease is not diagnosed at an early stage. If a person is suffering from ALL the disease needs to be diagnosed at an early stage before it starts spreading, if it starts spreading the person’s chances of survival would also reduce. Here comes the need of an accurate automated system which would assist the oncologists to diagnose the disease as early as possible. In this paper some of the algorithms that are enhanced to detect and classify ALL are incorporated. In order to classify the Acute Lymphocytic Leukemia a hybrid model has been deployed to improve the accuracy of the diagnosis and it is termed as Hybrid CNN Enhanced Ensemble SVM for the classification of malignancy. Machine Learning classifiers are also used to design the system and it is then compared with enhanced CNN based on the performance metrics

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Robust Active Learning Multiple Fault Diagnosis of PMSM Drives with Sensorless Control under Dynamic Operations and Imbalanced Datasets

    Get PDF
    Authors accepted manuscript© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes an active learning scheme to detect multiple faults in permanent magnet synchronous motors in dynamic operations without using historical labelled faulty training data. The proposed method combines the self-supervised anomaly detector based on a local outlier factor (LOF) and a deep Q-network (DQN) supervised reinforcement learner to classify interturn short-circuit, local demagnetisation and mixed faults. The first fault, which is detected by LOF and verified by an expert during maintenance, is used as training data for the DQN classifier. From that point onward, the LOF anomaly detector and DQN fault classifiers are working in tandem in the identification of new faults, which require expert intervention when either of them identifies a fault. The robustness of the scheme against dynamic operations, mixed fault and imbalanced training datasets is validated via a comparative study using stray flux data from an inhouse test setup.acceptedVersio

    A concept drift-tolerant case-base editing technique

    Full text link
    © 2015 Elsevier B.V. All rights reserved. The evolving nature and accumulating volume of real-world data inevitably give rise to the so-called "concept drift" issue, causing many deployed Case-Based Reasoning (CBR) systems to require additional maintenance procedures. In Case-base Maintenance (CBM), case-base editing strategies to revise the case-base have proven to be effective instance selection approaches for handling concept drift. Motivated by current issues related to CBR techniques in handling concept drift, we present a two-stage case-base editing technique. In Stage 1, we propose a Noise-Enhanced Fast Context Switch (NEFCS) algorithm, which targets the removal of noise in a dynamic environment, and in Stage 2, we develop an innovative Stepwise Redundancy Removal (SRR) algorithm, which reduces the size of the case-base by eliminating redundancies while preserving the case-base coverage. Experimental evaluations on several public real-world datasets show that our case-base editing technique significantly improves accuracy compared to other case-base editing approaches on concept drift tasks, while preserving its effectiveness on static tasks
    • …
    corecore