2,659 research outputs found

    Comparative Analysis of Segment Anything Model and U-Net for Breast Tumor Detection in Ultrasound and Mammography Images

    Full text link
    In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance

    Can high-frequency ultrasound predict metastatic lymph nodes in patients with invasive breast cancer?

    Get PDF
    Aim To determine whether high-frequency ultrasound can predict the presence of metastatic axillary lymph nodes, with a high specificity and positive predictive value, in patients with invasive breast cancer. The clinical aim is to identify patients with axillary disease requiring surgery who would not normally, on clinical grounds, have an axillary dissection, so potentially improving outcome and survival rates. Materials and methods The ipsilateral and contralateral axillae of 42 consecutive patients with invasive breast cancer were scanned prior to treatment using a B-mode frequency of 13 MHz and a Power Doppler frequency of 7 MHz. The presence or absence of an echogenic centre for each lymph node detected was recorded, and measurements were also taken to determine the L/S ratio and the widest and narrowest part of the cortex. Power Doppler was also used to determine vascularity. The contralateral axilla was used as a control for each patient. Results In this study of patients with invasive breast cancer, ipsilateral lymph nodes with a cortical bulge ≥3 mm and/or at least two lymph nodes with absent echogenic centres indicated the presence of metastatic axillary lymph nodes (10 patients). The sensitivity and specificity were 52.6% and 100%, respectively, positive and negative predictive values were 100% and 71.9%, respectively, the P value was 0.001 and the Kappa score was 0.55.\ud Conclusion This would indicate that high-frequency ultrasound can be used to accurately predict metastatic lymph nodes in a proportion of patients with invasive breast cancer, which may alter patient management

    Breast mass detection with faster R-CNN: On the feasibility of learning from noisy annotations

    Get PDF
    In this work we study the impact of noise on the training of object detection networks for the medical domain, and how it can be mitigated by improving the training procedure. Annotating large medical datasets for training data-hungry deep learning models is expensive and time consuming. Leveraging information that is already collected in clinical practice, in the form of text reports, bookmarks or lesion measurements would substantially reduce this cost. Obtaining precise lesion bounding boxes through automatic mining procedures, however, is difficult. We provide here a quantitative evaluation of the effect of bounding box coordinate noise on the performance of Faster R-CNN object detection networks for breast mass detection. Varying degrees of noise are simulated by randomly modifying the bounding boxes: in our experiments, bounding boxes could be enlarged up to six times the original size. The noise is injected in the CBIS-DDSM collection, a well curated public mammography dataset for which accurate lesion location is available. We show how, due to an imperfect matching between the ground truth and the network bounding box proposals, the noise is propagated during training and reduces the ability of the network to correctly classify lesions from background. When using the standard Intersection over Union criterion, the area under the FROC curve decreases by up to 9%. A novel matching criterion is proposed to improve tolerance to noise

    Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review

    Get PDF
    : Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions

    Developing novel quantitative imaging analysis schemes based machine learning for cancer research

    Get PDF
    The computer-aided detection (CAD) scheme is a developing technology in the medical imaging field, and it attracted extensive research interest in recent years. In this dissertation, I investigated the feasibility of developing several new novel CAD schemes for different cancer research purposes. First, I investigated the feasibility of identifying a new quantitative imaging marker based on false-positives generated by a computer-aided detection (CAD) scheme to predict short-term breast cancer risk. For this study, an existing CAD scheme was applied “as is” to process each image. From CAD-generated results, some detection features were computed from each image. Two logistic regression models were then trained and tested using a leave-one-case-out cross-validation method to predict each testing case's likelihood of being positive in the next subsequent screening. This study demonstrated that CAD-generated false-positives contain valuable information to predict short-term breast cancer risk. Second, I identified and applied quantitative imaging features computed from ultrasound images of athymic nude mice to predict tumor response to treatment at an early stage. For this study, a CAD scheme was developed to perform tumor segmentation and image feature analysis. The study demonstrated the feasibility of extracting quantitative image features from the ultrasound images taken at an early treatment stage to predict tumor response to therapies. Last, I optimized a machine learning model for predicting peritoneal metastasis in gastric cancer. For this purpose, I have developed a CAD scheme to segment the tumor volume and extract quantitative image features automatically. Then, I reduced the dimensionality of features with a new method named random projection to optimize the model's performance. Finally, the gradient boosting machine model was applied along with a synthetic minority oversampling technique to predict peritoneal metastasis risk. Results suggested that the random projection method yielded promising results in improving the accuracy performance in peritoneal metastasis prediction. In summary, in my Ph.D. studies, I have investigated and tested several innovative approaches to develop different CAD schemes and identify quantitative imaging markers with high discriminatory power in various cancer research applications. Study results demonstrated the feasibility of applying CAD technology to several new application fields, which can help radiologists and gynecologists improve accuracy and consistency in disease diagnosis and prognosis assessment of using the medical image
    corecore