66,220 research outputs found

    Hybrid models for combination of visual and textual features in context-based image retrieval.

    Get PDF
    Visual Information Retrieval poses a challenge to intelligent information search systems. This is due to the semantic gap, the difference between human perception (information needs) and the machine representation of multimedia objects. Most existing image retrieval systems are monomodal, as they utilize only visual or only textual information about images. The semantic gap can be reduced by improving existing visual representations, making them suitable for a large-scale generic image retrieval. The best up-to-date candidates for a large-scale Content-based Image Retrieval are models based on the Bag of Visual Words framework. Existing approaches, however, produce high dimensional and thus expensive representations for data storage and computation. Because the standard Bag of Visual Words framework disregards the relationships between the histogram bins, the model can be further enhanced by exploiting the correlations between the visual words. Even the improved visual features will find it hard to capture an abstract semantic meaning of some queries, e.g. straight road in the USA. Textual features, on the other hand, would struggle with such queries as church with more than two towers as in many cases the information about the number of towers would be missing. Thus, both visual and textual features represent complementary yet correlated aspects of the same information object, an image. Existing hybrid approaches for the combination of visual and textual features do not take these inherent relationships into account and thus the combinations performance improvement is limited. Visual and textual features can be also combined in the context of relevance feedback. The relevance feedback can help us narrow down and correct the search. The feedback mechanism would produce subsets of visual query and feedback representations as well as subsets of textual query and textual feedback representations. A meaningful feature combination in the context of relevance feedback should take the inherent inter (visual-textual) and intra (visual-visual, textualtextual) relationships into account. In this work, we propose a principled framework for the semantic gap reduction in large scale generic image retrieval. The proposed framework comprises development and enhancement of novel visual features, a hybrid model for the visual and textual features combination, and a hybrid model for the combination of features in the context of relevance feedback, with both fixed and adaptive weighting schemes (importance of a query and its context). Apart from the experimental evaluation of our models, theoretical validations of some interesting discoveries on feature fusion strategies were also performed. The proposed models were incorporated into our prototype system with an interactive user interface

    Efficient Nearest Neighbors Search for Large-Scale Landmark Recognition

    Full text link
    The problem of landmark recognition has achieved excellent results in small-scale datasets. When dealing with large-scale retrieval, issues that were irrelevant with small amount of data, quickly become fundamental for an efficient retrieval phase. In particular, computational time needs to be kept as low as possible, whilst the retrieval accuracy has to be preserved as much as possible. In this paper we propose a novel multi-index hashing method called Bag of Indexes (BoI) for Approximate Nearest Neighbors (ANN) search. It allows to drastically reduce the query time and outperforms the accuracy results compared to the state-of-the-art methods for large-scale landmark recognition. It has been demonstrated that this family of algorithms can be applied on different embedding techniques like VLAD and R-MAC obtaining excellent results in very short times on different public datasets: Holidays+Flickr1M, Oxford105k and Paris106k

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014
    • …
    corecore