16,090 research outputs found

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Routing design for less-than-truckload motor carriers using ant colony techniques

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results

    ROUTING DESIGN FOR LESS-THAN-TRUCKLOAD MOTOR CARRIERS USING ANT COLONY TECHNIQUES

    Get PDF
    One of the most important challenges for Less-Than-Truck-Load carriers consists of determining how to consolidate flows of small shipments to minimize costs while maintaining a certain level of service. For any origin-destination pair, there are several strategies to consolidate flows, but the most usual ones are: peddling/collecting routes and shipping through one or more break-bulk terminals. Therefore, the target is determining a route for each origin-destination pair that minimizes the total transportation and handling cost guaranteeing a certain level of service. Exact resolution is not viable for real size problems due to the excessive computational time required. This research studies different aspects of the problem and provides a metaheuristic algorithm (based on Ant Colonies Optimization techniques) capable of solving real problems in a reasonable computational time. The viability of the approach has been proved by means of the application of the algorithm to a real Spanish case, obtaining encouraging results.

    Ants constructing rule-based classifiers.

    Get PDF
    Classifiers; Data; Data mining; Studies;

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks
    corecore