588 research outputs found

    Improving the altimetric rain record from Jason-1 & Jason-2

    Get PDF
    Dual-frequency rain-flagging has long been a standard part of altimetric data analysis, both for quality control of the data and for the study of rain itself, because altimeters can provide a finer spatial sampling of rain than can passive microwave instruments. However, there have been many varied implementations, using different records of the surface backscatter and different thresholds. This paper compares four different measures available for the recently-launched Jason-2. The evaluation compares these measures against clearly desired properties, finding that in most cases the adjusted backscatter and that from the ice retracker perform much better than that recommended in the users' handbook. The adjusted backscatter measure also provides a much better link to observations from Jason-1, opening up a much longer period for consistent rain investigations, and enabling greatly improved analysis of the short-scale variability of precipitation. Initial analysis shows that although the spatial and temporal gradients of backscatter increase at very low winds, the spatial gradients in rain attenuation are concentrated where rainfall is greatest, whilst the temporal changes have a simple broad latitudinal pattern

    Seasat data utilization project

    Get PDF
    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer

    Modeling Envisat RA-2 waveforms in the coastal zone: case-study of calm water contamination

    Get PDF
    Radar altimeters have so far had limited use in the coastal zone, the area with most societal impact. This is due to both lack of, or insufficient accuracy in the necessary corrections, and more complicated altimeter signals. This paper examines waveform data from the Envisat RA-2 as it passes regularly over Pianosa (a 10 km2 island in the NW Mediterranean). Forty-six repeat passes were analysed, with most showing a reduction in signal upon passing over the island, with weak early returns corresponding to the reflections from land. Intriguingly one third of cases showed an anomalously bright hyperbolic feature. This feature may be due to extremely calm waters in the Golfo della Botte (northern side of the island), but the cause of its intermittency is not clear. The modelling of waveforms in such a complex land/sea environment demonstrates the potential for sea surface height retrievals much closer to the coast than is achieved by routine processing. The long-term development of altimetric records in the coastal zone will not only improve the calibration of altimetric data with coastal tide gauges, but also greatly enhance the study of storm surges and other coastal phenomena

    Linear retrieval and global measurements of wind speed from the Seasat SMMR

    Get PDF
    Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods

    CryoSat-2 Significant Wave Height in Polar Oceans Derived Using a Semi-Analytical Model of Synthetic Aperture Radar 2011–2019

    Get PDF
    This paper documents the retrieval of significant ocean surface wave heights in the Arctic Ocean from CryoSat-2 data. We use a semi-analytical model for an idealised synthetic aperture satellite radar or pulse-limited radar altimeter echo power. We develop a processing methodology that specifically considers both the Synthetic Aperture and Pulse Limited modes of the radar that change close to the sea ice edge within the Arctic Ocean. All CryoSat-2 echoes to date were matched by our idealised echo revealing wave heights over the period 2011–2019. Our retrieved data were contrasted to existing processing of CryoSat-2 data and wave model data, showing the improved fidelity and accuracy of the semi-analytical echo power model and the newly developed processing methods. We contrasted our data to in situ wave buoy measurements, showing improved data retrievals in seasonal sea ice covered seas. We have shown the importance of directly considering the correct satellite mode of operation in the Arctic Ocean where SAR is the dominant operating mode. Our new data are of specific use for wave model validation close to the sea ice edge and is available at the link in the data availability statement

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    Observational studies of scatterometer ocean vector winds in the presence of dynamic air-sea interactions

    Get PDF
    Ocean vector wind measurements produced by satellite scatterometers are used in many applications across many disciplines, from forcing ocean circulation models and improving weather forecasts, to aiding in rescue operations and helping marine management services, and even mapping energy resources. However, a scatterometer does not in fact measure wind directly; received radar backscatter is proportional to the roughness of the ocean\u27s surface, which is primarily modified by wind speed and direction. As scatterometry has evolved in recent decades, highly calibrated geophysical model functions have been designed to transform this received backscatter into vector winds. Because these products are used in so many applications, it is crucial to understand any limitations of this process. For instance, a number of assumptions are routinely invoked when interpreting scatterometer retrievals in areas of complex air-sea dynamics without, perhaps, sufficient justification from supporting observations. This dissertation uses satellite data, in situ measurements, and model simulations to evaluate these assumptions. Robustness is assured by using multiple types of satellite scatterometer data from different sensors and of different resolutions, including an experimental ultra-high resolution product that first required validation in the region of study. After this validation survey, a subsequent investigation used the multiple data resolutions to focus on the influence of ocean surface currents on scatterometer retrievals. Collocated scatterometer and buoy wind data along with buoy surface current measurements support the theory that scatterometer winds respond to the relative motion of the ocean surface; in other words, that they can effectively be considered current-relative, as has been generally assumed. Another major control on scatterometer retrievals is atmospheric stability, which affects both surface roughness and wind shear. A study using wind, stress, temperature, and pressure measurements at a mooring in the Gulf Stream as well as collocated scatterometer data proved that the scatterometer responds as expected to changes in stability. Therefore, scatterometer retrievals can effectively be used to evaluate changes in wind due to speed adjustment over temperature fronts. Given the conclusions of these individual studies, this work collectively solidifies decades of theory and validates the use of scatterometer winds in areas of complex air-sea interaction
    corecore