44 research outputs found

    Improving Achievable Rate for the Two-User SISO Interference Channel with Improper Gaussian Signaling

    Full text link
    This paper studies the achievable rate region of the two-user single-input-single-output (SISO) Gaussian interference channel, when the improper Gaussian signaling is applied. Under the assumption that the interference is treated as additive Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper Gaussian signaling, which depends on the users' input covariances only, and an additional term, which is a function of both the users' covariances and pseudo-covariances. The additional degree of freedom given by the pseudo-covariance, which is conventionally set to be zero for the case of proper Gaussian signaling, provides an opportunity to improve the achievable rate by employing the improper Gaussian signaling. Since finding the optimal solution for the joint covariance and pseudo-covariance optimization is difficult, we propose a sub-optimal but efficient algorithm by separately optimizing these two sets of parameters. Numerical results show that the proposed algorithm provides a close-to-optimal performance as compared to the exhaustive search method, and significantly outperforms the optimal proper Gaussian signaling and other existing improper Gaussian signaling schemes.Comment: Version 2, Invited paper, submitted to Asilomar 201

    On the superiority of improper Gaussian signaling in wireless interference MIMO scenarios

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Recent results have elucidated the benefits of using improper Gaussian signaling (IGS) as compared to conventional proper Gaussian signaling (PGS) in terms of achievable rate for interference-limited conditions. This paper exploits majorization theory tools to formally quantify the gains of IGS along with widely linear transceivers for MIMO systems in interferencelimited scenarios. The MIMO point-to-point channel with interference (P2P-I) is analyzed, assuming that received interference can be either proper or improper, and we demonstrate that the use of the optimal IGS when received interference is improper strictly outperforms (in terms of achievable rate and mean square error) the use of the optimal PGS when interference is proper. Then, these results are extended to two practical situations. First, the MIMO Z-interference channel (Z-IC) is investigated, where a trade-off arises: with IGS we could increase the achievable rate of the interfered user while gracefully degrading the rate of the non-interfered user. Second, these concepts are applied to a two-tier heterogeneous cellular network (HCN) where macrocells and smallcells coexist and multiple MIMO Z-IC appear.Peer ReviewedPostprint (author's final draft

    Robust improper signaling for two-user SISO interference channels

    Get PDF
    It has been shown that improper Gaussian signaling (IGS) can improve the performance of wireless interference-limited systems when perfect channel-state information (CSI) is available. In this paper, we investigate the robustness of IGS against imperfect CSI on the transmitter side in a two-user single-input single-output (SISO) interference channel (IC) as well as in a SISO Z-IC, when interference is treated as noise. We assume that the true channel coefficients belong to a known region around the channel estimates, which we call the uncertainty region. Following a worst-case robustness approach, we study the rate-region boundary of the IC for the worst channel in the uncertainty region. For the two-user IC, we derive a robust design in closed form, which is independent of the phase of the channels by allowing only one of the users to transmit IGS. For the Z-IC, we provide a closed-form design for the transmission parameters by considering an enlarged uncertainty region and allowing both users to employ IGS. In both cases, the IGS-based designs are ensured to perform no worse than proper Gaussian signaling. Furthermore, we show, through numerical examples, that the proposed robust designs significantly outperform non-robust solutions.The work of M. Soleymani, C. Lameiro and P. J. Schreier was supported by the German Research Foundation (DFG) under grants LA 4107/1-1 and SCHR 1384/8-1. The work of I. Santamaria was supported by MINECO of Spain and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN)

    Benefits of improper signaling for underlay cognitive radio

    Get PDF
    In this letter we study the potential benefits of improper signaling for a secondary user (SU) in underlay cognitive radio networks. We consider a basic yet illustrative scenario in which the primary user (PU) always transmit proper Gaussian signals and has a minimum rate constraint. After parameterizing the SU transmit signal in terms of its power and circularity coefficient (which measures the degree of impropriety), we prove that the SU improves its rate by transmitting improper signals only when the ratio of the squared modulus between the SU-PU interference link and the SU direct link exceeds a given threshold. As a by-product of this analysis, we obtain the optimal circularity coefficient that must be used by the SU depending on its power budget. Some simulation results show that the SU benefits from the transmission of improper signals especially when the PU is not highly loaded.C. Lameiro and I. Santamaría have received funding from the Spanish Government (MICINN) under projects CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS), TEC2013-47141-C4-3-R (RACHEL) and FPU Grant AP2010-2189; and also from the Deutscher Akademischer Austauschdienst (DAAD) under its programm ”Research grants for doctoral candidates and young academics and scientists”. P. Schreier receives financial support from the Alfried Krupp von Bohlen und Halbach foundation, under its program ”Return of German scientists from abroad”
    corecore