448 research outputs found

    Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences

    Full text link
    Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the predicted utterance has to be fixed to that of the input utterance, which limits the flexibility in mimicking the speaking rates and rhythmic patterns for the target speaker. On the other hand, sequence-to-sequence learning model was used to remove the above length constraint, but parallel training data are needed. In this paper, we propose an approach utilizing sequence-to-sequence model trained with unsupervised Cycle-GAN to perform the transformation between the phoneme posteriorgram sequences for different speakers. In this way, the length constraint mentioned above is removed to offer rhythm-flexible voice conversion without requiring parallel data. Preliminary evaluation on two datasets showed very encouraging results.Comment: 8 pages, 6 figures, Submitted to SLT 201

    DiCLET-TTS: Diffusion Model based Cross-lingual Emotion Transfer for Text-to-Speech -- A Study between English and Mandarin

    Full text link
    While the performance of cross-lingual TTS based on monolingual corpora has been significantly improved recently, generating cross-lingual speech still suffers from the foreign accent problem, leading to limited naturalness. Besides, current cross-lingual methods ignore modeling emotion, which is indispensable paralinguistic information in speech delivery. In this paper, we propose DiCLET-TTS, a Diffusion model based Cross-Lingual Emotion Transfer method that can transfer emotion from a source speaker to the intra- and cross-lingual target speakers. Specifically, to relieve the foreign accent problem while improving the emotion expressiveness, the terminal distribution of the forward diffusion process is parameterized into a speaker-irrelevant but emotion-related linguistic prior by a prior text encoder with the emotion embedding as a condition. To address the weaker emotional expressiveness problem caused by speaker disentanglement in emotion embedding, a novel orthogonal projection based emotion disentangling module (OP-EDM) is proposed to learn the speaker-irrelevant but emotion-discriminative embedding. Moreover, a condition-enhanced DPM decoder is introduced to strengthen the modeling ability of the speaker and the emotion in the reverse diffusion process to further improve emotion expressiveness in speech delivery. Cross-lingual emotion transfer experiments show the superiority of DiCLET-TTS over various competitive models and the good design of OP-EDM in learning speaker-irrelevant but emotion-discriminative embedding.Comment: accepted by TASL

    U-Style: Cascading U-nets with Multi-level Speaker and Style Modeling for Zero-Shot Voice Cloning

    Full text link
    Zero-shot speaker cloning aims to synthesize speech for any target speaker unseen during TTS system building, given only a single speech reference of the speaker at hand. Although more practical in real applications, the current zero-shot methods still produce speech with undesirable naturalness and speaker similarity. Moreover, endowing the target speaker with arbitrary speaking styles in the zero-shot setup has not been considered. This is because the unique challenge of zero-shot speaker and style cloning is to learn the disentangled speaker and style representations from only short references representing an arbitrary speaker and an arbitrary style. To address this challenge, we propose U-Style, which employs Grad-TTS as the backbone, particularly cascading a speaker-specific encoder and a style-specific encoder between the text encoder and the diffusion decoder. Thus, leveraging signal perturbation, U-Style is explicitly decomposed into speaker- and style-specific modeling parts, achieving better speaker and style disentanglement. To improve unseen speaker and style modeling ability, these two encoders conduct multi-level speaker and style modeling by skip-connected U-nets, incorporating the representation extraction and information reconstruction process. Besides, to improve the naturalness of synthetic speech, we adopt mean-based instance normalization and style adaptive layer normalization in these encoders to perform representation extraction and condition adaptation, respectively. Experiments show that U-Style significantly surpasses the state-of-the-art methods in unseen speaker cloning regarding naturalness and speaker similarity. Notably, U-Style can transfer the style from an unseen source speaker to another unseen target speaker, achieving flexible combinations of desired speaker timbre and style in zero-shot voice cloning

    Zero-Shot Emotion Transfer For Cross-Lingual Speech Synthesis

    Full text link
    Zero-shot emotion transfer in cross-lingual speech synthesis aims to transfer emotion from an arbitrary speech reference in the source language to the synthetic speech in the target language. Building such a system faces challenges of unnatural foreign accents and difficulty in modeling the shared emotional expressions of different languages. Building on the DelightfulTTS neural architecture, this paper addresses these challenges by introducing specifically-designed modules to model the language-specific prosody features and language-shared emotional expressions separately. Specifically, the language-specific speech prosody is learned by a non-autoregressive predictive coding (NPC) module to improve the naturalness of the synthetic cross-lingual speech. The shared emotional expression between different languages is extracted from a pre-trained self-supervised model HuBERT with strong generalization capabilities. We further use hierarchical emotion modeling to capture more comprehensive emotions across different languages. Experimental results demonstrate the proposed framework's effectiveness in synthesizing bi-lingual emotional speech for the monolingual target speaker without emotional training data.Comment: Accepted by ASRU202

    Reimagining Speech: A Scoping Review of Deep Learning-Powered Voice Conversion

    Full text link
    Research on deep learning-powered voice conversion (VC) in speech-to-speech scenarios is getting increasingly popular. Although many of the works in the field of voice conversion share a common global pipeline, there is a considerable diversity in the underlying structures, methods, and neural sub-blocks used across research efforts. Thus, obtaining a comprehensive understanding of the reasons behind the choice of the different methods in the voice conversion pipeline can be challenging, and the actual hurdles in the proposed solutions are often unclear. To shed light on these aspects, this paper presents a scoping review that explores the use of deep learning in speech analysis, synthesis, and disentangled speech representation learning within modern voice conversion systems. We screened 621 publications from more than 38 different venues between the years 2017 and 2023, followed by an in-depth review of a final database consisting of 123 eligible studies. Based on the review, we summarise the most frequently used approaches to voice conversion based on deep learning and highlight common pitfalls within the community. Lastly, we condense the knowledge gathered, identify main challenges and provide recommendations for future research directions
    • …
    corecore