4,628 research outputs found

    NPLDA: A Deep Neural PLDA Model for Speaker Verification

    Full text link
    The state-of-art approach for speaker verification consists of a neural network based embedding extractor along with a backend generative model such as the Probabilistic Linear Discriminant Analysis (PLDA). In this work, we propose a neural network approach for backend modeling in speaker recognition. The likelihood ratio score of the generative PLDA model is posed as a discriminative similarity function and the learnable parameters of the score function are optimized using a verification cost. The proposed model, termed as neural PLDA (NPLDA), is initialized using the generative PLDA model parameters. The loss function for the NPLDA model is an approximation of the minimum detection cost function (DCF). The speaker recognition experiments using the NPLDA model are performed on the speaker verificiation task in the VOiCES datasets as well as the SITW challenge dataset. In these experiments, the NPLDA model optimized using the proposed loss function improves significantly over the state-of-art PLDA based speaker verification system.Comment: Published in Odyssey 2020, the Speaker and Language Recognition Workshop (VOiCES Special Session). Link to GitHub Implementation: https://github.com/iiscleap/NeuralPlda. arXiv admin note: substantial text overlap with arXiv:2001.0703

    A hybrid RBF-HMM system for continuous speech recognition

    Get PDF
    A hybrid system for continuous speech recognition, consisting of a neural network with Radial Basis Functions and Hidden Markov Models is described in this paper together with discriminant training techniques. Initially the neural net is trained to approximate a-posteriori probabilities of single HMM states. These probabilities are used by the Viterbi algorithm to calculate the total scores for the individual hybrid phoneme models. The final training of the hybrid system is based on the "Minimum Classification Error\u27; objective function, which approximates the misclassification rate of the hybrid classifier, and the "Generalized Probabilistic Descent\u27; algorithm. The hybrid system was used in continuous speech recognition experiments with phoneme units and shows about 63.8% phoneme recognition rate in a speaker-independent task
    corecore