11,437 research outputs found

    A survey on the use of relevance feedback for information access systems

    Get PDF
    Users of online search engines often find it difficult to express their need for information in the form of a query. However, if the user can identify examples of the kind of documents they require then they can employ a technique known as relevance feedback. Relevance feedback covers a range of techniques intended to improve a user's query and facilitate retrieval of information relevant to a user's information need. In this paper we survey relevance feedback techniques. We study both automatic techniques, in which the system modifies the user's query, and interactive techniques, in which the user has control over query modification. We also consider specific interfaces to relevance feedback systems and characteristics of searchers that can affect the use and success of relevance feedback systems

    Experiments in terabyte searching, genomic retrieval and novelty detection for TREC 2004

    Get PDF
    In TREC2004, Dublin City University took part in three tracks, Terabyte (in collaboration with University College Dublin), Genomic and Novelty. In this paper we will discuss each track separately and present separate conclusions from this work. In addition, we present a general description of a text retrieval engine that we have developed in the last year to support our experiments into large scale, distributed information retrieval, which underlies all of the track experiments described in this document

    The Mirror DBMS at TREC-8

    Get PDF
    The database group at University of Twente participates in TREC8 using the Mirror DBMS, a prototype database system especially designed for multimedia and web retrieval. From a database perspective, the purpose has been to check whether we can get sufficient performance, and to prepare for the very large corpus track in which we plan to participate next year. From an IR perspective, the experiments have been designed to learn more about the effect of the global statistics on the ranking

    Using relevance feedback in expert search

    Get PDF
    In Enterprise settings, expert search is considered an important task. In this search task, the user has a need for expertise - for instance, they require assistance from someone about a topic of interest. An expert search system assists users with their "expertise need" by suggesting people with relevant expertise to the topic of interest. In this work, we apply an expert search approach that does not explicitly rank candidates in response to a query, but instead implicitly ranks candidates by taking into account a ranking of document with respect to the query topic. Pseudo-relevance feedback, aka query expansion, has been shown to improve retrieval performance in adhoc search tasks. In this work, we investigate to which extent query expansion can be applied in an expert search task to improve the accuracy of the generated ranking of candidates. We define two approaches for query expansion, one based on the initial of ranking of documents for the query topic. The second approach is based on the final ranking of candidates. The aims of this paper are two-fold. Firstly, to determine if query expansion can be successfully applied in the expert search task, and secondly, to ascertain if either of the two forms of query expansion can provide robust, improved retrieval performance. We perform a thorough evaluation contrasting the two query expansion approaches in the context of the TREC 2005 and 2006 Enterprise tracks

    Applying Science Models for Search

    Full text link
    The paper proposes three different kinds of science models as value-added services that are integrated in the retrieval process to enhance retrieval quality. The paper discusses the approaches Search Term Recommendation, Bradfordizing and Author Centrality on a general level and addresses implementation issues of the models within a real-life retrieval environment.Comment: 14 pages, 3 figures, ISI 201

    Knowledge-based Query Expansion in Real-Time Microblog Search

    Full text link
    Since the length of microblog texts, such as tweets, is strictly limited to 140 characters, traditional Information Retrieval techniques suffer from the vocabulary mismatch problem severely and cannot yield good performance in the context of microblogosphere. To address this critical challenge, in this paper, we propose a new language modeling approach for microblog retrieval by inferring various types of context information. In particular, we expand the query using knowledge terms derived from Freebase so that the expanded one can better reflect users' search intent. Besides, in order to further satisfy users' real-time information need, we incorporate temporal evidences into the expansion method, which can boost recent tweets in the retrieval results with respect to a given topic. Experimental results on two official TREC Twitter corpora demonstrate the significant superiority of our approach over baseline methods.Comment: 9 pages, 9 figure

    Relevance-based Word Embedding

    Full text link
    Learning a high-dimensional dense representation for vocabulary terms, also known as a word embedding, has recently attracted much attention in natural language processing and information retrieval tasks. The embedding vectors are typically learned based on term proximity in a large corpus. This means that the objective in well-known word embedding algorithms, e.g., word2vec, is to accurately predict adjacent word(s) for a given word or context. However, this objective is not necessarily equivalent to the goal of many information retrieval (IR) tasks. The primary objective in various IR tasks is to capture relevance instead of term proximity, syntactic, or even semantic similarity. This is the motivation for developing unsupervised relevance-based word embedding models that learn word representations based on query-document relevance information. In this paper, we propose two learning models with different objective functions; one learns a relevance distribution over the vocabulary set for each query, and the other classifies each term as belonging to the relevant or non-relevant class for each query. To train our models, we used over six million unique queries and the top ranked documents retrieved in response to each query, which are assumed to be relevant to the query. We extrinsically evaluate our learned word representation models using two IR tasks: query expansion and query classification. Both query expansion experiments on four TREC collections and query classification experiments on the KDD Cup 2005 dataset suggest that the relevance-based word embedding models significantly outperform state-of-the-art proximity-based embedding models, such as word2vec and GloVe.Comment: to appear in the proceedings of The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies
    • 

    corecore