4,374 research outputs found

    Energy efficiency performance improvements for ant-based routing algorithm in wireless sensor networks

    Get PDF
    The main problem for event gathering in wireless sensor networks (WSNs) is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR) algorithm, based on the ant colony optimization (ACO) metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1) a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2) intelligent update of routing tables in case of a node or link failure, and (3) reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC) and Beesensor

    Energy Efficiency Performance Improvements for Ant-Based Routing Algorithm in Wireless Sensor Networks

    Get PDF
    The main problem for event gathering in wireless sensor networks (WSNs) is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR) algorithm, based on the ant colony optimization (ACO) metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1) a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2) intelligent update of routing tables in case of a node or link failure, and (3) reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC) and Beesensor

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1

    Towards the fast and robust optimal design of Wireless Body Area Networks

    Full text link
    Wireless body area networks are wireless sensor networks whose adoption has recently emerged and spread in important healthcare applications, such as the remote monitoring of health conditions of patients. A major issue associated with the deployment of such networks is represented by energy consumption: in general, the batteries of the sensors cannot be easily replaced and recharged, so containing the usage of energy by a rational design of the network and of the routing is crucial. Another issue is represented by traffic uncertainty: body sensors may produce data at a variable rate that is not exactly known in advance, for example because the generation of data is event-driven. Neglecting traffic uncertainty may lead to wrong design and routing decisions, which may compromise the functionality of the network and have very bad effects on the health of the patients. In order to address these issues, in this work we propose the first robust optimization model for jointly optimizing the topology and the routing in body area networks under traffic uncertainty. Since the problem may result challenging even for a state-of-the-art optimization solver, we propose an original optimization algorithm that exploits suitable linear relaxations to guide a randomized fixing of the variables, supported by an exact large variable neighborhood search. Experiments on realistic instances indicate that our algorithm performs better than a state-of-the-art solver, fast producing solutions associated with improved optimality gaps.Comment: Authors' manuscript version of the paper that was published in Applied Soft Computin

    Distance Aware Relaying Energy-efficient: DARE to Monitor Patients in Multi-hop Body Area Sensor Networks

    Full text link
    In recent years, interests in the applications of Wireless Body Area Sensor Network (WBASN) is noticeably developed. WBASN is playing a significant role to get the real time and precise data with reduced level of energy consumption. It comprises of tiny, lightweight and energy restricted sensors, placed in/on the human body, to monitor any ambiguity in body organs and measure various biomedical parameters. In this study, a protocol named Distance Aware Relaying Energy-efficient (DARE) to monitor patients in multi-hop Body Area Sensor Networks (BASNs) is proposed. The protocol operates by investigating the ward of a hospital comprising of eight patients, under different topologies by positioning the sink at different locations or making it static or mobile. Seven sensors are attached to each patient, measuring different parameters of Electrocardiogram (ECG), pulse rate, heart rate, temperature level, glucose level, toxins level and motion. To reduce the energy consumption, these sensors communicate with the sink via an on-body relay, affixed on the chest of each patient. The body relay possesses higher energy resources as compared to the body sensors as, they perform aggregation and relaying of data to the sink node. A comparison is also conducted conducted with another protocol of BAN named, Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficient Multi-hop ProTocol (M-ATTEMPT). The simulation results show that, the proposed protocol achieves increased network lifetime and efficiently reduces the energy consumption, in relative to M-ATTEMPT protocol.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore