68 research outputs found

    Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges

    Full text link
    A new traceability chain for the derivation of the farad from dc quantum Hall effect has been implemented at INRIM. Main components of the chain are two new coaxial transformer bridges: a resistance ratio bridge, and a quadrature bridge, both operating at 1541 Hz. The bridges are energized and controlled with a polyphase direct-digital-synthesizer, which permits to achieve both main and auxiliary equilibria in an automated way; the bridges and do not include any variable inductive divider or variable impedance box. The relative uncertainty in the realization of the farad, at the level of 1000 pF, is estimated to be 64E-9. A first verification of the realization is given by a comparison with the maintained national capacitance standard, where an agreement between measurements within their relative combined uncertainty of 420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure

    Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    Full text link
    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8K and magnetic fields below 5T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.Comment: 15 pages, 9 figure

    Contributions of precision engineering to the revision of the SI

    Get PDF
    All measurements performed in science and industry are based on the International System of Units, the SI. It has been proposed to revise the SI following an approach which was implemented for the redefinition of the unit of length, the metre, namely to define the SI units by fixing the numerical values of so-called defining constants, including c, h, e, k and NA. We will discuss the reasoning behind the revision, which will likely be put into force in 2018. Precision engineering was crucial to achieve the required small measurement uncertainties and agreement of measurement results for the defining constants

    The ampere and the electrical units in the quantum era

    Get PDF
    By fixing two fundamental constants from quantum mechanics, the Planck constant hh and the elementary charge ee, the revised Syst\`eme International (SI) of units endorses explicitly quantum mechanics. This evolution also highlights the importance of this theory which underpins the most accurate realization of the units. From 20 May 2019, the new definitions of the kilogram and of the ampere, based on fixed values of hh and ee respectively, will particularly impact the electrical metrology. The Josephson effect (JE) and the quantum Hall effect (QHE), used to maintain voltage and resistance standards with unprecedented reproducibility since 1990, will henceforth provide realizations of the volt and the ohm without the uncertainties inherited from the older electromechanical definitions. More broadly, the revised SI will sustain the exploitation of quantum effects to realize electrical units, to the benefit of end-users. Here, we review the state-of-the-art of these standards and discuss further applications and perspectives.Comment: 78 pages, 35 figure

    Real-space renormalization group approach to the integer quantum Hall effect: Ortsraum-Renormierungsgruppenansatz für den ganzzahligen Quanten-Hall-Effekt

    Get PDF
    Gegenstand dieser Dissertation ist die numerische Untersuchung des ganzzahligen Quanten-Hall-Effekts (QHE). Im Mittelpunkt steht dabei der Übergang zwischen den charakteristischen Plateaus des Hall-Leitwertes. Die Beschreibung des Übergangs erfolgt im Rahmen des Chalker-Coddington-Netzwerkmodells, wobei zusätzlich ein Ortsraum-Renormierungsgruppenansatz (RG) angewendet wird um hohe Systemgrößen zu erreichen. Diese Vorgehensweise erlaubt eine einfache, aber statistisch sehr gute Beschreibung der starken charakteristischen Fluktuationen am Übergang im Rahmen von Verteilungsfunktionen. Die RG Resultate werden zunächst mit Ergebnissen anderer Methoden verglichen. Es werden die kritische Verteilungsfunktion des Leitwertes am QHE Übergang und deren Momente ermittelt. Aus dem Verhalten in der Nähe des Übergangs läßt sich der Wert des kritischen Exponenten der Lokalisierungslänge ableiten. Diese Ergebnisse stimmen sehr gut mit exakten numerischen Simulationen überein. Die RG Methode wird daraufhin zur Berechnung der Energieniveaustatistik (ENS) erweitert. Die kritische ENS der normierten Abstände von benachbarten Energieniveaus und der kritische Exponent werden bestimmt. Danach wird der Einfluß von makroskopischen Inhomogenitäten in Form von langreichweitiger korrelierter Unordnung auf die kritischen Eigenschaften des QHE Übergangs untersucht. Hierbei zeigt sich ein Anwachsen des Exponenten mit zunehmender Reichweite und Stärke der Unordnung. Abschließend wird die RG zur Berechnung des Hall-Widerstandes eingesetzt. Die kritische Verteilung des Hall-Widerstandes läßt auf sehr starke Fluktuationen am Übergang schließen. Abseits des Übergangs in Richtung Isolator wird divergentes Verhalten des Hall-Widerstandes gefunden. Zusammenfassend demonstrieren alle Ergebnisse die Robustheit universeller Eigenschaften am QHE Übergang

    Electronic correlation in the quantum Hall regime

    Get PDF
    Two-dimensional interacting electron systems become strongly correlated if the electrons are subject to a perpendicular high magnetic field. After introducing the physics of the quantum Hall regime the incompressible many- particle ground state and its excitations are studied in detail at fractional filling factors for spin-polarized electrons. The spin degree of freedom whose importance was shown in recent experiments is considered by studying the thermodynamics at filling factor one and near one.Comment: 55 pages, 26 eps-figure
    corecore