6,340 research outputs found

    ESSVCS: an enriched secret sharing visual cryptography

    Get PDF
    Visual Cryptography (VC) is a powerful technique that combines the notions of perfect ciphers and secret sharing in cryptography with that of raster graphics. A binary image can be divided into shares that are able to be stacked together so as to approximately recover the original image. VC is a unique technique in the sense that the encrypted message can be decrypted directly by the Human Visual System (HVS). The distinguishing characteristic of VC is the ability of secret restoration without the use of computation. However because of restrictions of the HVS, pixel expansion and alignment problems, a VC scheme perhaps can only be applied to share a small size of secret image. In this paper, we present an Enriched Secret Sharing Visual Cryptography Scheme (ESSVCS) to let the VC shares carry more secrets, the technique is to use cypher output of private-key systems as the input random numbers of VC scheme, meanwhile the encryption key could be shared, the shared keys could be associated with the VC shares. After this operation, VC scheme and secret sharing scheme are merged with the private-key system. Under this design, we implement a (k; t; n)-VC scheme. Compared to those existing schemes, our scheme could greatly enhance the ability of current VC schemes and could cope with pretty rich secrets

    A Reversible Steganography Scheme of Secret Image Sharing Based on Cellular Automata and Least Significant Bits Construction

    Get PDF
    Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Investigations of cellular automata-based stream ciphers

    Get PDF
    In this thesis paper, we survey the literature arising from Stephan Wolfram\u27s original paper, “Cryptography with Cellular Automata” [WOL86] that first suggested stream ciphers could be constructed with cellular automata. All published research directly and indirectly quoting this paper are summarized up until the present. We also present a novel stream cipher design called Sum4 that is shown to have good randomness properties and resistance to approximation using linear finite shift registers. Sum4 is further studied to determine its effective strength with respect to key size given that an attack with a SAT solver is more efficient than a bruteforce attack. Lastly, we give ideas for further research into improving the Sum4 cipher

    Image Based Attack and Protection on Secure-Aware Deep Learning

    Get PDF
    In the era of Deep Learning, users are enjoying remarkably based on image-related services from various providers. However, many security issues also arise along with the ubiquitous usage of image-related deep learning. Nowadays, people rely on image-related deep learning in work and business, thus there are more entries for attackers to wreck the image-related deep learning system. Although many works have been published for defending various attacks, lots of studies have shown that the defense cannot be perfect. In this thesis, one-pixel attack, a kind of extremely concealed attacking method toward deep learning, is analyzed first. Two novel detection methods are proposed for detecting the one-pixel attack. Considering that image tempering mostly happens in image sharing through an unreliable way, next, this dissertation extends the detection against single attack method to a platform for higher level protection. We propose a novel smart contract based image sharing system. The system keeps full track of the shared images and any potential alteration to images will be notified to users. From extensive experiment results, it is observed that the system can effectively detect the changes on the image server even in the circumstance that the attacker erases all the traces from the image-sharing server. Finally, we focus on the attack targeting blockchain-enhanced deep learning. Although blockchain-enhanced federated learning can defend against many attack methods that purely crack the deep learning part, it is still vulnerable to combined attack. A novel attack method that combines attacks on PoS blockchain and attacks on federated learning is proposed. The proposed attack method can bypass the protection from blockchain and poison federated learning. Real experiments are performed to evaluate the proposed methods

    Visual cryptography with cheating shares

    Get PDF
    Visual cryptography is a technique that applies the human visual system to decode encrypted information, such as text, image and number, without any sophisticated devices and computing capabilities. Therefore, compared with the traditional cryptography, it is apparent that it saves a large amount of time and money on devices and computations. Also, visual cryptography provides the convenience for humans to carry out decryption with a portal card which is significant to the business application. In the past decade, visual cryptography has been thoroughly researched not only on its contrast and subpixel expansion, but also on its applications. The main contribution of this thesis is the security of visual cryptography related to the dishonest shareholders. This is the first known work concerning this variety of potentially secure problem. In the previous papers, the shareholders are inherently honest. However, in the real world, it is impossible to guarantee that every shareholder would be honest forever(e.g., because of the interest of business or military, some shareholders might change to be the traitors). Therefore, a new method based on visual authentication[16] is proposed and the improvement is also made. In this thesis, we also review the previous papers on different fields of the visual cryptography

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future
    corecore