318 research outputs found

    An LCD tachistoscope with submillisecond precision

    Get PDF
    Tachistoscopes allow brief visual stimulation delivery, which is crucial for experiments in which subliminal presentation is required. Up to now, tachistoscopes have had shortcomings with respect to timing accuracy, reliability, and flexibility of use. Here, we present a new and inexpensive two-channel tachistoscope that allows for exposure durations in the submillisecond range with an extremely high timing accuracy. The tachistoscope consists of two standard liquid-crystal display (LCD) monitors of the light-emitting diode (LED) backlight type, a semipermeable mirror, a mounting rack, and an experimental personal computer (PC). The monitors have been modified to provide external access to the LED backlights, which are controlled by the PC via the standard parallel port. Photodiode measurements confirmed reliable operation of the tachistoscope and revealed switching times of 3 μs. Our method may also be of great advantage in single-monitor setups, in which it allows for manipulating the stimulus timing with submillisecond precision in many experimental situations. Where this is not applicable, the monitor can be operated in standard mode by disabling the external backlight control instantaneousl

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    Get PDF
    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented

    Exploiting All-Programmable System on Chips for Closed-Loop Real-Time Neural Interfaces

    Get PDF
    High-density microelectrode arrays (HDMEAs) feature thousands of recording electrodes in a single chip with an area of few square millimeters. The obtained electrode density is comparable and even higher than the typical density of neuronal cells in cortical cultures. Commercially available HDMEA-based acquisition systems are able to record the neural activity from the whole array at the same time with submillisecond resolution. These devices are a very promising tool and are increasingly used in neuroscience to tackle fundamental questions regarding the complex dynamics of neural networks. Even if electrical or optical stimulation is generally an available feature of such systems, they lack the capability of creating a closed-loop between the biological neural activity and the artificial system. Stimuli are usually sent in an open-loop manner, thus violating the inherent working basis of neural circuits that in nature are constantly reacting to the external environment. This forbids to unravel the real mechanisms behind the behavior of neural networks. The primary objective of this PhD work is to overcome such limitation by creating a fullyreconfigurable processing system capable of providing real-time feedback to the ongoing neural activity recorded with HDMEA platforms. The potentiality of modern heterogeneous FPGAs has been exploited to realize the system. In particular, the Xilinx Zynq All Programmable System on Chip (APSoC) has been used. The device features reconfigurable logic, specialized hardwired blocks, and a dual-core ARM-based processor; the synergy of these components allows to achieve high elaboration performances while maintaining a high level of flexibility and adaptivity. The developed system has been embedded in an acquisition and stimulation setup featuring the following platforms: \u2022 3\ub7Brain BioCam X, a state-of-the-art HDMEA-based acquisition platform capable of recording in parallel from 4096 electrodes at 18 kHz per electrode. \u2022 PlexStim\u2122 Electrical Stimulator System, able to generate electrical stimuli with custom waveforms to 16 different output channels. \u2022 Texas Instruments DLP\uae LightCrafter\u2122 Evaluation Module, capable of projecting 608x684 pixels images with a refresh rate of 60 Hz; it holds the function of optical stimulation. All the features of the system, such as band-pass filtering and spike detection of all the recorded channels, have been validated by means of ex vivo experiments. Very low-latency has been achieved while processing the whole input data stream in real-time. In the case of electrical stimulation the total latency is below 2 ms; when optical stimuli are needed, instead, the total latency is a little higher, being 21 ms in the worst case. The final setup is ready to be used to infer cellular properties by means of closed-loop experiments. As a proof of this concept, it has been successfully used for the clustering and classification of retinal ganglion cells (RGCs) in mice retina. For this experiment, the light-evoked spikes from thousands of RGCs have been correctly recorded and analyzed in real-time. Around 90% of the total clusters have been classified as ON- or OFF-type cells. In addition to the closed-loop system, a denoising prototype has been developed. The main idea is to exploit oversampling techniques to reduce the thermal noise recorded by HDMEAbased acquisition systems. The prototype is capable of processing in real-time all the input signals from the BioCam X, and it is currently being tested to evaluate the performance in terms of signal-to-noise-ratio improvement

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    A Novel Approach Of Independent Brain-computer Interface Based On SSVEP

    Get PDF
    Durante os últimos dez anos, as Interfaces Cérebro Computador (ICC) baseadas em Potenciais Evocados Visuais de Regime Permanente (SSVEP) têm chamado a atenção de muitos pesquisadores devido aos resultados promissores e as altas taxas de precisão atingidas. Este tipo de ICC permite que pessoas com dificuldades motoras severas possam se comunicar com o mundo exterior através da modulação da atenção visual a luzes piscantes com frequência determinada. Esta Tese de Doutorado tem o intuito de desenvolver um novo enfoque dentro das chamadas ICC Independentes, nas quais os usuários não necessitam executar tarefas neuromusculares para seleção visual de objetivos específicos, característica que a distingue das tradicionais ICCs-SSVEP. Assim, pessoas com difculdades motoras severas, como pessoas com Esclerose Lateral Amiotrófca (ELA), contam com uma nova alternativa de se comunicar através de sinais cerebrais. Diversas contribuições foram realizadas neste trabalho, como, por exemplo, melhoria do algoritmo extrator de características, denominado Índice de Sincronização Multivariável (ou MSI, do Inglês), para a detecção de potenciais evocados; desenvolvimento de um novo método de detecção de potenciais evocados através da correlação entre modelos multidimensionais (tensores); o desenvolvimento do primeiro estudo sobre a influência de estímulos coloridos na detecção de SSVEPs usando LEDs; a aplicação do conceito de Compressão na detecção de SSVEPs; e, fnalmente, o desenvolvimento de uma nova ICC independente que utiliza o enfoque de Percepção Fundo-Figura (ou FGP, do Inglês)

    Piloted aircraft simulation concepts and overview

    Get PDF
    An overview of piloted aircraft simulation is presented that reflects the viewpoint of an aeronautical technologist. The intent is to acquaint potential users with some of the basic concepts and issues that characterize piloted simulation. Application to the development of aircraft are highlighted, but some aspects of training simulators are covered. A historical review is given together with a description of some current simulators. Simulator usages, advantages, and limitations are discussed and human perception qualities important to simulation are related. An assessment of current simulation is presented that addresses validity, fidelity, and deficiencies. Future prospects are discussed and technology projections are made

    WORKING MEMORY ASSESSMENT AND TRAINING

    Get PDF
    Working memory, the ability to maintain and manipulate information, is a core cognitive function important for everyday life. The capacity of working-memory differs across individuals, with working-memory capacity a reliable predictor of general fluid intelligence, verbal and mathematical abilities, and classroom achievement. However, research has been inconclusive on whether working-memory is a unitary domain-general construct, or multi-component domain-specific construct. Most theories had until recently thought that working-memory was a fixed ability; however, recent research suggests that working-memory is malleable and can be improved through cognitive training. These training-induced improvements have also been shown on untrained cognitive tasks, such as general fluid intelligence, attention, reading, and math. My research examines the structure of working-memory, validates newly designed web-administered working-memory assessments, and investigates the malleability of domain specific working-memory training
    corecore