16 research outputs found

    Aportaciones y Mejoras en los Códigos Termohidráulicos y Neutrónicos de Estimación Óptima RELAP5, TRAC-BF1, TRACE Y PARCS

    Full text link
    Tesis por compendio[ES] La simulación de transitorios forma parte del proceso de licenciamiento de una central nuclear. Esto implica que los códigos, así como los modelos utilizados deben estar verificados y validados. Normalmente, esta simulación se realiza con códigos termohidráulicos de planta que tienen una definición de la cinética del reactor muy simplificada con cinética puntual o unidimensional. Una mejora importante en la simulación de transitorios base de diseño se basa en la utilización de códigos acoplados termohidráulico-neutrónicos, que permiten obtener resultados sobre la evolución de la potencia del reactor en tres dimensiones. Los códigos neutrónicos 3D necesitan parámetros de la cinética y secciones eficaces también en 3D ajustados al punto del ciclo que se quiere simular y que abarquen las condiciones que se alcancen durante el transitorio. Por otro lado, para poder verificar tanto los códigos como los modelos es necesario llevar a cabo una serie de simulaciones de diferentes transitorios. De esta manera, se comprueba cómo funciona el código acoplado en diferentes condiciones de operación y simulación. Esta tesis contribuye al conocimiento del uso de códigos termohidráulico-neutrónicos acoplados en la simulación de transitorios base de diseño (Design Basis Accidents -DBAs). Los códigos mejorados y verificados son los códigos termohidráulicos RELAP5, TRAC-BF1 y TRACE y el código neutrónico PARCS. Los parámetros neutrónicos necesarios en PARCS se han obtenido aplicando una metodología que simplifica el modelo del núcleo. Esta metodología, ya desarrollada e implementada, denominada SIMTAB, se ha mejorado, tanto en las posibilidades de aplicación de la misma como en la optimización y actualización de la programación del código fuente. Los transitorios analizados con los códigos RELAP5/PARCS acoplados son: transitorio por expulsión de barra de control y transitorio de inyección de boro en un reactor PWR. Con los códigos TRAC-BF1/PARCS acoplados se ha analizado el transitorio por disparo de turbina en la C. N. Peach Bottom. Para llevar a cabo las simulaciones con TRAC-BF1/PARCS se ha implementado el acoplamiento de ambos códigos, puesto que originalmente el código TRAC-BF1 no estaba preparado para ello. El análisis de inestabilidades en reactores BWR se ha realizado con RELAP5/PARCS en dos reactores BWR: C. N. Peach Bottom y C. N. Ringhals 1. Para ello se ha desarrollado una metodología de análisis que abarca desde la definición del modelo termohidráulico y del modelo neutrónico hasta el análisis de las señales simuladas obtenidas con PARCS. La metodología también incluye la aplicación de diferentes perturbaciones basadas en los modos Lambda y en el análisis de las señales reales de planta. Se ha llevado a cabo un estudio del modelo para el cálculo de la concentración de Boro en los códigos termohidráulicos y se ha mejorado este modelo en el código TRAC-BF1, incorporando un nuevo método de resolución en el código fuente. El modelo para el cálculo del calor de desintegración también se ha revisado y mejorado en los códigos TRAC-BF1 y PARCS. En ambos casos se ha implementado el modelo ANS 2005. El análisis de sensibilidad e incertidumbre está ligado a los resultados de los códigos de mejor estimación como los mejorados en esta tesis. Este análisis se ha realizado sobre los transitorios de expulsión de barra en un reactor PWR y el transitorio de caída de barra en un reactor BWR con RELAP5/PARCS. Los resultados de estos trabajos aportan una metodología de aplicación para la simulación correcta de transitorios con códigos acoplados. Además, ha servido para detectar y subsanar deficiencias en los códigos, y de esta manera disponer de unos códigos de mejor estimación preparados para el análisis de transitorios base de diseño.[CA] La simulació de transitoris forma part del procés de llicenciament d'una central nuclear. Això implica que els codis, així com els models utilitzats han d'estar verificats i validats. Normalment, aquesta simulació es realitza amb codis termohidràulics de planta que tenen una definició de la cinètica del reactor molt simplificada amb cinètica puntual o unidimensional. Una millora important en la simulació de transitoris base de disseny es basa en la utilització de codis acoblats termohidràulic-neutrònics, que permeten obtindre resultats sobre l'evolució de la potència del reactor en tres dimensions. Els codis neutrònics 3D necessiten paràmetres de la cinètica i seccions eficaces també en 3D ajustats al punt del cicle que es vol simular i que abasten les condicions que s'aconseguisquen durant el transitori. D'altra banda, per a poder verificar tant els codis com els models és necessari dur a terme una sèrie de simulacions de diferents transitoris. D'aquesta manera, es comprova com funciona el codi acoblat en diferents condicions d'operació i simulació. Aquesta tesi contribueix al coneixement de l'ús de codis termohidràulic-neutrònics acoblats en la simulació de transitoris base de disseny. Els codis millorats i verificats són els codis termohidràulics RELAP5, TRAC-BF1 i TRACE i el codi neutrònic PARCS. Els paràmetres neutrònics necessaris en PARCS s'han obtingut aplicant una metodologia que simplifica el model del nucli. Aquesta metodologia, ja desenvolupada i implementada, denominada SIMTAB, s'ha millorat, tant en les possibilitats d'aplicació de la mateixa com en l'optimització i actualització de la programació del codi font. Els transitoris analitzats amb els codis RELAP5/PARCS acoblats són: transitori per expulsió de barra de control i transitori d'injecció de bor en un reactor PWR. Amb els codis TRAC-BF1/PARCS acoblats s'ha analitzat el transitori per disparament de turbina en la C. N. Peach Bottom. Per a dur a terme les simulacions amb TRAC-BF1/PARCS s'ha implementat l'acoblament de tots dos codis, ja que originalment el codi TRAC-BF1 no estava preparat per a això. L'anàlisi d'inestabilitats en reactors BWR s'ha realitzat amb RELAP5/PARCS en dos reactors BWR: C. N. Peach Bottom i C. N. Ringhals 1. Per a això s'ha desenvolupat una metodologia d'anàlisi que abasta des de la definició del model termohidràulic i del model neutrònic fins a l'anàlisi dels senyals simulats. La metodologia també inclou l'aplicació de diferents pertorbacions basades en els modes Lambda i en l'anàlisi dels senyals reals de planta. S'ha dut a terme un estudi del model per al càlcul de la concentració de Bor en els codis termohidràulics i s'ha millorat aquest model en el codi TRAC-BF1, incorporant un nou mètode de resolució en el codi font. El model per al càlcul de la calor de desintegració també s'ha revisat i millorat en els codis TRAC-BF1 i PARCS. En tots dos casos s'ha implementat el model ANS 2005. L'anàlisi de sensibilitat i incertesa està lligat als resultats dels codis de millor estimació com els millorats en aquesta tesi. Aquesta anàlisi s'ha realitzat sobre els transitoris d'expulsió de barra en un reactor PWR i el transitori de caiguda de barra en un reactor BWR amb RELAP5/PARCS. Els resultats d'aquests treballs aporten una metodologia d'aplicació per a la simulació correcta de transitoris amb codis acoblats. A més, ha servit per a detectar i esmenar deficiències en els codis, i d'aquesta manera disposar d'uns codis de millor estimació preparats per a l'anàlisi de transitoris base de disseny.[EN] The simulation of transients is part of the licensing process of a nuclear power plant. This implies that the codes as well as the models used must be verified and validated. Normally, this simulation is performed with thermalhydraulic plant codes that have a very simplified definition of reactor kinetics with point or one-dimensional kinetics. An important improvement in the simulation of design-basis transients rely on the use of thermohydraulic-neutronic coupled codes, which allow to obtain results of the evolution of the reactor power in three dimensions. The 3D neutron codes need parameters of the kinetics and cross-sections also in 3D adjusted to the point of the cycle to be simulated that must cover the conditions reached during the transient. On the other hand, to be able to verify both the codes and the models it is necessary to carry out a series of simulations of different transients. In this way, it is checked how the coupled code works in different operating and simulation conditions. This thesis contributes to increase the knowledge of the use of thermalhydraulic-neutronic coupled codes in the simulation of design basis accidents (DBAs). The improved and verified codes are the thermalhydraulic codes RELAP5, TRAC-BF1 and TRACE and the neutronic code PARCS. The necessary neutronic parameters in PARCS have been obtained by applying a methodology that simplifies the core model. This methodology, already developed and implemented, called SIMTAB, has been improved in this thesis in its application possibilities and also in the optimization and updating of the source code. The transients analyzed with RELAP5/PARCS coupled code are: control rod ejection transient and boron injection transient in a PWR reactor. With TRAC-BF1/PARCS coupled code, the transient analyzed is the turbine trip transient in Peach Bottom NPP. To carry out the simulations with TRAC-BF1/PARCS, the coupling of both codes has been implemented before, since originally the TRAC-BF1 code was not prepared for it. The analysis of instabilities in BWR reactors has been carried out with RELAP5/PARCS in two BWR reactors: Peach Bottom NPP and Ringhals 1 NPP. A methodology has been developed which cover from the definition of the thermalhydraulic model and the neutron model to the simulated signal analysis. The methodology also includes the application of different disturbances based on Lambda modes and the analysis of real plant signals. A study of the model for the calculation of the Boron concentration in thermalhydraulic codes has been carried out. This model has been improved in the TRAC-BF1 code, incorporating a new resolution method in the source code. The model for the calculation of the decay heat has also been revised and improved in TRAC-BF1 and PARCS codes. In both cases, the ANS 2005 model has been implemented. The sensitivity and uncertainty analysis is linked to the results of the best estimate codes such as those improved in this thesis. This analysis has been carried out on the control rod ejection transients in a PWR reactor and the control rod drop transient in a BWR reactor with RELAP5/PARCS. The results of these works provide an application methodology for the correct simulation of transients with coupled codes. In addition, it has been used to detect and correct deficiencies in the codes, and therefore, to have better estimate codes prepared for the analysis of design-basis transients.Barrachina Celda, TM. (2020). Aportaciones y Mejoras en los Códigos Termohidráulicos y Neutrónicos de Estimación Óptima RELAP5, TRAC-BF1, TRACE Y PARCS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158745TESISCompendi

    Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR

    Full text link
    This PhD study, developed at Universitat Politècnica de València (UPV), aims to cover the first phase of the benchmark released by the expert group on Uncertainty Analysis in Modeling (UAM-LWR). The main contribution to the benchmark, made by the thesis' author, is the development of a MATLAB program requested by the benchmark organizers. This is used to generate neutronic libraries to distribute among the benchmark participants. The UAM benchmark pretends to determine the uncertainty introduced by coupled multi-physics and multi-scale LWR analysis codes. The benchmark is subdivided into three phases: 1. Neutronic phase: obtain collapsed and homogenized problem-dependent cross sections and criticality analyses. 2. Core phase: standalone thermohydraulic and neutronic codes. 3. System phase: coupled thermohydraulic and neutronic code. In this thesis the objectives of the first phase are covered. Specifically, a methodology is developed to propagate the uncertainty of cross sections and other neutronic parameters through a lattice physics code and core simulator. An Uncertainty and Sensitivity (U&S) analysis is performed over the cross sections contained in the ENDF/B-VII nuclear library. Their uncertainty is propagated through the lattice physics code SCALE6.2.1, including the collapse and homogenization phase, up to the generation of problem-dependent neutronic libraries. Afterward, the uncertainty contained in these libraries can be further propagated through a core simulator, in this study PARCSv3.2. The module SAMPLER -available in the latest release of SCALE- and DAKOTA 6.3 statistical tool are used for the U&S analysis. As a part of this process, a methodology to obtain neutronic libraries in NEMTAB format -to be used in a core simulator- is also developed. A code-to-code comparison with CASMO-4 is used as a verification. The whole methodology is tested using a Boiling Water Reactor (BWR) reactor type. Nevertheless, there is not any concern or limitation regarding its use in any other type of nuclear reactor. The Gesellschaft für Anlagen und Reaktorsicherheit (GRS) stochastic methodology for uncertainty quantification is used. This methodology makes use of the high-fidelity model and nonparametric sampling to propagate the uncertainty. As a result, the number of samples (determined using the revised Wilks' formula) does not depend on the number of input parameters but only on the desired confidence and uncertainty of output parameters. Moreover, the output Probability Distribution Functions (PDFs) are not subject to normality. The main disadvantage is that each input parameter must have a pre-defined PDF. If possible, input PDFs are defined using information found in the related literature. Otherwise, the uncertainty definition is based on expert judgment. A second scenario is used to propagate the uncertainty of different thermohydraulic parameters through the coupled code TRACE5.0p3/PARCSv3.0. In this case, a PWR reactor type is used and a transient control rod drop occurrence is simulated. As a new feature, the core is modeled chan-by-chan following a fully 3D discretization. No other study is found using a detailed 3D core. This U&S analysis also makes use of the GRS methodology and DAKOTA 6.3.Este trabajo de doctorado, desarrollado en la Universitat Politècnica de València (UPV), tiene como objetivo cubrir la primera fase del benchmark presentado por el grupo de expertos Uncertainty Analysis in Modeling (UAM-LWR). La principal contribución al benchmark, por parte del autor de esta tesis, es el desarrollo de un programa de MATLAB solicitado por los organizadores del benchmark, el cual se usa para generar librerías neutrónicas a distribuir entre los participantes del benchmark. El benchmark del UAM pretende determinar la incertidumbre introducida por los códigos multifísicos y multiescala acoplados de análisis de reactores de agua ligera. El citado benchmark se divide en tres fases: 1. Fase neutrónica: obtener los parámetros neutrónicos y secciones eficaces del problema específico colapsados y homogenizados, además del análisis de criticidad. 2. Fase de núcleo: análisis termo-hidráulico y neutrónico por separado. 3. Fase de sistema: análisis termo-hidráulico y neutrónico acoplados. En esta tesis se completan los principales objetivos de la primera fase. Concretamente, se desarrolla una metodología para propagar la incertidumbre de secciones eficaces y otros parámetros neutrónicos a través de un código lattice y un simulador de núcleo. Se lleva a cabo un análisis de incertidumbre y sensibilidad para las secciones eficaces contenidas en la librería neutrónica ENDF/B-VII. Su incertidumbre se propaga a través del código lattice SCALE6.2.1, incluyendo las fases de colapsación y homogenización, hasta llegar a la generación de una librería neutrónica específica del problema. Luego, la incertidumbre contenida en dicha librería puede continuar propagándose a través de un simulador de núcleo, para este estudio PARCSv3.2. Para el análisis de incertidumbre y sensibilidad se ha usado el módulo SAMPLER -disponible en la última versión de SCALE- y la herramienta estadística DAKOTA 6.3. Como parte de este proceso, también se ha desarrollado una metodología para obtener librerías neutrónicas en formato NEMTAB para ser usadas en simuladores de núcleo. Se ha realizado una comparación con el código CASMO-4 para obtener una verificación de la metodología completa. Esta se ha probado usando un reactor de agua en ebullición del tipo BWR. Sin embargo, no hay ninguna preocupación o limitación respecto a su uso con otro tipo de reactor nuclear. Para la cuantificación de la incertidumbre se usa la metodología estocástica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Esta metodología hace uso del modelo de alta fidelidad y un muestreo no paramétrico para propagar la incertidumbre. Como resultado, el número de muestras (determinado con la fórmula revisada de Wilks) no depende del número de parámetros de entrada, sólo depende del nivel de confianza e incertidumbre deseados de los parámetros de salida. Además, las funciones de distribución de probabilidad no están limitadas a normalidad. El principal inconveniente es que se ha de disponer de las distribuciones de probabilidad de cada parámetro de entrada. Si es posible, las distribuciones de probabilidad de entrada se definen usando información encontrada en la literatura relacionada. En caso contrario, la incertidumbre se define en base a la opinión de un experto. Se usa un segundo escenario para propagar la incertidumbre de diferentes parámetros termo-hidráulicos a través del código acoplado TRACE5.0p3/PARCSv3.0. En este caso, se utiliza un reactor tipo PWR para simular un transitorio de una caída de barra. Como nueva característica, el núcleo se modela elemento a elemento siguiendo una discretización totalmente en 3D. No se ha encontrado ningún otro estudio que use un núcleo tan detallado en 3D. También se usa la metodología GRS y el DAKOTA 6.3 para este análisis de incertidumbre y sensibilidad.Aquest treball de doctorat, desenvolupat a la Universitat Politècnica de València (UPV), té com a objectiu cobrir la primera fase del benchmark presentat pel grup d'experts Uncertainty Analysis in Modeling (UAM-LWR). La principal contribució al benchmark, per part de l'autor d'aquesta tesi, es el desenvolupament d'un programa de MATLAB sol¿licitat pels organitzadors del benchmark, el qual s'utilitza per a generar llibreries neutròniques a distribuir entre els participants del benchmark. El benchmark del UAM pretén determinar la incertesa introduïda pels codis multifísics i multiescala acoblats d'anàlisi de reactors d'aigua lleugera. El citat benchmark es divideix en tres fases: 1. Fase neutrònica: obtenir els paràmetres neutrònics i seccions eficaces del problema específic, col¿lapsats i homogeneïtzats, a més de la anàlisi de criticitat. 2. Fase de nucli: anàlisi termo-hidràulica i neutrònica per separat. 3. Fase de sistema: anàlisi termo-hidràulica i neutrònica acoblats. En aquesta tesi es completen els principals objectius de la primera fase. Concretament, es desenvolupa una metodologia per propagar la incertesa de les seccions eficaces i altres paràmetres neutrònics a través d'un codi lattice i un simulador de nucli. Es porta a terme una anàlisi d'incertesa i sensibilitat per a les seccions eficaces contingudes en la llibreria neutrònica ENDF/B-VII. La seua incertesa es propaga a través del codi lattice SCALE6.2.1, incloent les fases per col¿lapsar i homogeneïtzar, fins aplegar a la generació d'una llibreria neutrònica específica del problema. Després, la incertesa continguda en la esmentada llibreria pot continuar propagant-se a través d'un simulador de nucli, per a aquest estudi PARCSv3.2. Per a l'anàlisi d'incertesa i sensibilitat s'ha utilitzat el mòdul SAMPLER -disponible a l'última versió de SCALE- i la ferramenta estadística DAKOTA 6.3. Com a part d'aquest procés, també es desenvolupa una metodologia per a obtenir llibreries neutròniques en format NEMTAB per ser utilitzades en simuladors de nucli. S'ha realitzat una comparació amb el codi CASMO-4 per obtenir una verificació de la metodologia completa. Aquesta s'ha provat utilitzant un reactor d'aigua en ebullició del tipus BWR. Tanmateix, no hi ha cap preocupació o limitació respecte del seu ús amb un altre tipus de reactor nuclear. Per a la quantificació de la incertesa s'utilitza la metodologia estocàstica Gesellschaft für Anlagen und Reaktorsicherheit (GRS). Aquesta metodologia fa ús del model d'alta fidelitat i un mostreig no paramètric per propagar la incertesa. Com a resultat, el nombre de mostres (determinat amb la fórmula revisada de Wilks) no depèn del nombre de paràmetres d'entrada, sols depèn del nivell de confiança i incertesa desitjats dels paràmetres d'eixida. A més, las funcions de distribució de probabilitat no estan limitades a la normalitat. El principal inconvenient és que s'ha de disposar de les distribucions de probabilitat de cada paràmetre d'entrada. Si és possible, les distribucions de probabilitat d'entrada es defineixen utilitzant informació trobada a la literatura relacionada. En cas contrari, la incertesa es defineix en base a l'opinió d'un expert. S'utilitza un segon escenari per propagar la incertesa de diferents paràmetres termo-hidràulics a través del codi acoblat TRACE5.0p3/PARCSv3.0. En aquest cas, s'utilitza un reactor tipus PWR per simular un transitori d'una caiguda de barra. Com a nova característica, cal assenyalar que el nucli es modela element a element seguint una discretizació totalment 3D. No s'ha trobat cap altre estudi que utilitze un nucli tan detallat en 3D. També s'utilitza la metodologia GRS i el DAKOTA 6.3 per a aquesta anàlisi d'incertesa i sensibilitat.¿Mesado Melia, C. (2017). Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86167TESI

    Nuclear Power

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the "system-thinking" approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Advanced Methodology to Simulate Boiling Water Reactor Transient Using Coupled Thermal-Hydraulic/Neutron-Kinetic Codes

    Get PDF
    Gekoppelte Thermohydraulik/Neutronenkinetik (TH/NK) Simulationen von Siedewasser-reaktor Transienten erfordern gut validierte und präzise Simulationswerkzeuge. Die Erzeugung der Wirkungsquerschnitte (XS), abhängig von individuellen thermohydraulischen Zustandsparameter, ist von größter Bedeutung für gekoppelte Simulationen. Problemabhängige XS-Sets für 3D-Kern Simulationen werden hauptsächlich von gut validierten, schnell laufenden kommerziellen und benutzerfreundlich Zellcodes wie CASMO und HELIOS erzeugt. In dieser Arbeit soll eine Berechnungsmethode, basierend auf dem Zellcode SCALE6/TRITON, dem XS Interface GenPMAXS, dem „Best-Estimate“ (BE) Systemcode TRACE und dem Kernsimulator PARCS für die Analyse von Siedewasserreaktor (SWR) Transienten vorgestellt werden. Die Rechenroutine ist durch eine weitere Unsicherheit und Sensitivitätsanalyse, basierend auf Monte Carlo Zufallsvariablen und der Fortpflanzung der Unsicherheiten von Eingabeparametern bis zur Ausgabe (SUSA Code) ergänzt. Die Untersuchung mit PARCS von Abbrandrechnungen eines einzelnen Brennelementes mit von SCALE/TRITON erzeugten XS zeigt eine gute Übereinstimmung mit den Ergebnissen mit den XS von CASMO. Um jedoch Defizite des Interface Programms GenPMAXS zu kompensieren, wurden Python-Skripte entwickelt, um fehlende Daten zu integrieren, z.B. die Ausbeuten an Jod, Xenon und Promethium in die aus der SCALE/TRITON Ausgabe von GenPMAXS generierten XS Datensätze (PMAXS-Format). Die Ergebnisse der Abbrandrechnungen eines ganzen SWR-Kerns zeigen die Wichtigkeit von Abbrandhistorien, adäquater Modellierung der Reflektorregionen und der Kontrollstäbe, da die PARCS Simulationen für abgebrannten Brennstoff und mit allen eingeführten Kontrollstäben an der Brennelementspitze und dem Brennelementende erheblich abweichen. Systematische Untersuchungen mit den gekoppelten Codes TRACE/PARCS wurden durchgeführt, um das Kern Verhalten bei verschiedenen thermischen Bedingungen mit den von SCALE6/TRITON und CASMO erstellten XS-Sets zu analysieren. Dabei geben die gekoppelten Rechnungen mit TRACE/PARCS die Ergebnisse der einzelnen Brennelementabbrandrechnung und der PARCS Rechnungen wieder. Eine Turbinenschnellabschaltung (TUSA), welche in einem SWR Typ-72 auftrat, wurde unter Verwendung der Wirkungsquerschnittsbibliotheken von SCALE/TRITON und CASMO im Detail untersucht. Dabei ist die Entwicklung der integralen SWR-Parameter, welche durch die gekoppelten Codes mit den XS von SCALE/TRITON bestimmt wurden sehr nah an den globalen Trends berechnet mit den CASMO XS. Weiter wurde der reaktordynamische Code PARCS erweitert (Unsicherheitsmodul), um die Berücksichtigung der Unsicherheiten der neutronenkinetischen Parameter in gekoppelten TRACE/PARCS Simulationen zu erleichtern. Für einen postulierten Druckstoß wurden eine Unsicherheit und Sensitivitätsanalyse mit TRACE/PARCS und SUSA durchgeführt. Die erhaltenen Ergebnisse zeigen die Fähigkeit solcher Methoden, die sich noch in der Entwicklung befinden. Basierend auf diesen Analysen konnte das Unsicherheitsband für Schlüsselparameter, wie z.B. Reaktivität, sowie die Bedeutung der neutronenkinetischen Parameter für diese Unfallszenarien bestimmt und identifiziert werden

    PREMIUM, a benchmark on the quantification of the uncertainty of the physical models in the system thermal-hydraulic codes: methodologies and data review

    Get PDF
    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermalhydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The present document was initially conceived as a final report for the Phase I “Introduction and Methodology Review” of the PREMIUM benchmark. The objective of Phase I is to refine the definition of the benchmark and publish the available methodologies of model input uncertainty quantification relevant to the objectives of the benchmark. In this initial version the document was approved by WGAMA and has shown its usefulness during the subsequent phases of the project. Once Phase IV was completed, and following the suggestion of WGAMA members, the document was updated adding a few new sections, particularly the description of four new methodologies that were developed during this activity. Such developments were performed by some participants while contributing to PREMIUM progress (which is why this report arrives after those of other phases). After this revision the document title was changed to “PREMIUM methodologies and data review”. The introduction includes first a chapter devoted to contextualization of the benchmark in nuclear safety research and licensing, followed by a description of the PREMIUM objectives. Next, a description of the Phases in which the benchmark is divided and its organization is explained. Chapter two consists of a review of the involvement of the different participants, making a brief explanation of the input uncertainty quantification methodologies used in the activity. The document ends with some conclusions on the development of Phase I, some more general remarks and some statements on the benefits of the benchmark, which can be briefly summarized as it follows: - Contribution to development of tools and experience related to uncertainty calculation and promotion of the use of BEPU approaches for licensing and safety assessment purposes; - Contribution to prioritization of improvements to thermal-hydraulic system codes; - Contribution to a fluent and close interaction between the scientific community and regulatory organizations. Appendices include the complete description of the experimental data FEBA/SEFLEX used in the benchmark and the methodologies CIRCÉ and FFTBM and the general requirements and description specification used for Phase I. Due to the revision of the document, four extra appendixes have been added related to the methods developed during the activity, MCDA DIPE, Tractebel IUQ and PSI methods

    Realization of a Methodology for the assessment of “Best Estimate” codes for the analysis of nuclear systems and application to Cathare2 V2.5 code

    Get PDF
    Il presente lavoro riguarda la qualifica dei codici per la valutazione della sicurezza dei reattori nucleari. La generazione attuale dei codici termoidraulici di sistema (come relap5, Cathare2, Trace,..), è basata sulla soluzione di sei equazioni di bilancio per il liquido e per il vapore, che sono integrate da un adeguato insieme di equazioni costitutive. Le equazioni di bilancio sono accoppiate con le equazioni di scambio termico e con le equazioni della cinetica neutronica (tipicamente la cinetica puntuale), per rappresentare le più importanti condizioni al contorno nelle simulazioni di un impianto nucleare durante condizioni normali e incidentali. Un aspetto chiave nello sviluppo di tali codici è sia il processo di sviluppo stesso che il processo di qualifica indipendente. Il primo è collegato alla verifica del codice durante la realizzazione del codice stesso, mentre il secondo consiste nella validazione della capacità del codice di riprodurre i dati provenienti dagli esperimenti condotti in apparati sperimentali: “Integral Test Facility” (ITF) o “Separate Effect Test Facilities” (SETF). La qualifica indipendente è eseguita nella pratica comune da gruppi di utenti diversi dagli sviluppatori del codice. Un ruolo rilevante nella qualifica indipendente è rappresentato dalla procedura seguita dall’utilizzatore del codice, perché deve essere robusta e applicata in modo sistematico. Negli studi per la sicurezza del comportamento degli impianti nucleari, possono essere identificati due differenti approcci (prevalentemente finalizzati all’ottenimento della licenza di esercizio): Conservativo: • Sovra/sotto stima di specifici parametri per coprire l’incertezza. • Valori calcolati sono da considerarsi sovra/peggiori rispetto al valore reale. Best estimate/realistico: • Libero dal pessimismo deliberato. • Comportamento reale dell’apparato sperimentale. • Valutazione dell’incertezza. La presente tesi è focalizzata sull’approccio “Best Estimate” (BE), vale a dire sulla revisione e razionalizzazione delle procedure sviluppate al Dipartimento di Ingegneria Meccanica Nucleare e della Produzione (DIMNP) dell’Università di Pisa (UNIPI), che tratta la qualifica dei risultati dei codici di BE. Il codice di riferimento è il “Code for Analysis of Thermal-Hydraulics during an Accident of Reactor and safety Evaluation” (Cathare2). Esso è stato sviluppato dal 1979 con la collaborazione del “Commissariat a l’Energy Atomique” (CEA), dell’ “lnstitut de Protection et de Sûreté Nucleaire" (IPSN), dell’ “Elecricitè De France” (EDF) e di Framatome. Il presente lavoro ha come punto di partenza quello di individuare le necessità relative all’applicazione dei codici nelle analisi deterministiche per la sicurezza dei reattori nucleari. Il primo elemento analizzato è la qualifica della nodalizzazione. Questa riguarda il livello di conoscenza di tutti gli elementi del sistema studiato (impianto nucleare o apparato sperimentale) che deve essere ben noto durante la realizzazione della nodalizzazione. Dopo aver realizzato la nodalizzazione, il processo di qualifica prevede due passaggi nei quali occorre dimostrare la corrispondenza geometrica tra il sistema studiato e la nodalizzazione e i maggiori parametri termoidraulici. Un ulteriore passaggio è rappresentato dalla qualifica della capacità della nodalizzazione di riprodurre gli stessi risultati provenienti dagli esperimenti, in modo da verificare se ci siano inadeguatezze nelle scelte dell’utilizzatore. Un ruolo primario nel processo descritto è rappresentato dall’ interazione codice-utente denominata “user-effect” e questo effetto viene analizzato in dettaglio mostrando alcuni esempi. Nel testo è stato evidenziato il ruolo primario dell’utilizzatore in tutte le fasi previste nell’applicazione del codice. Dopo aver analizzato il problema, sono state suggerite alcune contromisure da adottare per ridurre l’effetto dell’utilizzatore sul risultato finale. Per raggiungere tale scopo è stata utilizzata l’esperienza internazionale e le relative linee guide della “International Atomic Energy Agency” (IAEA) . Un altro argomento rilevante, discusso nel presente lavoro, è l’effetto del computer e del compilatore sul risultato finale. A parte gli errori contenuti nel compilatore, sono state evidenziate alcuni pratiche scorrette durante la realizzazione del programma. Un ulteriore effetto del compilatore è connesso alla precisione (64 bits o 32 bits) della macchina utilizzata per il calcolo. Sono descritti in dettaglio la disponibilità di strumenti computazionali per la qualifica dei risultati. In particolare è stato descritto il metodo basato sulla “Uncertainty Methodology based on Accuracy Extrapolation" (UMAE). Questo metodologia deriva l’incertezza dalla estrapolazione della accuratezza. Sono stati evidenziati usi differenti della UMAE e riguardano la qualifica dell’utilizzatore del codice, della nodalizzazione dell’apparato sperimentale e della nodalizzazione dell’impianto nucleare. Il metodo adottato nella UMAE non è solo usato per la qualifica dei calcoli, ma alcune procedure possono essere adottate per la dimostrazione della scalabilità dei dati sperimentali, per la dimostrazione della scalabilità (indipendenza dal fattore di scala), per la dimostrazione dell’ accuratezza del codice, ecc. E’ stato proposto uno strumento addizionale capace di quantificare l’accuratezza di un dato calcolo di un codice: il “Fast Fourier Transform Based Method” (FFTBM). Un risultato chiave discusso è la “Scaling Strategy” presa dal “Addressing the scaling issue”, riguardante la valutazione dei codici a fronte dei dati sperimentali provenienti da apparati sperimentali integrali e/o apparati sperimentali ad effetto separato. Nella metodologia UMAE il problema della scala ha un ruolo rilevante, perchè l’incertezza collegata alla previsione del codice per l’impianto nucleare è estrapolata dal database costruito considerando l’accuratezza dei calcoli nelle simulazioni dei dati sperimentali provenienti dagli apparati sperimentali integrali ITF. Questo aspetto rappresenta il collegamento tra il problema della scala e la valutazione dell’incertezza, un passo necessario all’interno dell’approccio BE nell’applicazione del codice. L’approccio al problema della scala proposta da UNIPI è sostanzialmente l’uso dei dati sperimentali e dei risultati delle analisi di supporto. Nell’ottica del miglioramento della metodologia per la qualifica indipendente, sono stati illustrati i risultati dell’uso di un codice di Fluido Dinamica Computazionale (CFD), come strumento di supporto durante la realizzazione della nodalizzazione per un calcolo più accurato della distribuzione dei coefficienti di perdita di carico in alcune parti scelte del sistema studiato. Nella stessa ottica, è state illustrata una ulteriore attività che riguarda l’analisi della accuratezza nella valutazione dei coefficienti di perdita di pressione concentrate K per mezzo di un codice di CFD. Lo scopo è stato quello di evidenziare quali parametri geometrici e termoidraulici hanno effetto sul valore di K. Infine, un breve sommario illustra i maggiori risultati ottenuti dall’applicazione del codice Catharte2 nello sviluppo e nella qualifica delle procedure di “Accident Management” (AM) per gli impianti nucleari VVER1000, sulla base dei dati sperimentali provenienti dall’apparato sperimentale PSB-VVER (Russia). Inoltre è stato descritta la qualifica del codice per i fenomeni di trasporto di boro con i dati provenienti dall’apparato sperimentale PKL III operante in Germania, che simula un impianto nucleare PWR. In entrambe le applicazioni è stata utilizzata la metodologia sviluppata al DIMNP e il codice Cathare2 ha dimostrato di adempiere a tutti i requisiti previsti nella metodologia
    corecore