358 research outputs found

    A determination of the molar gas constant R by acoustic thermometry in helium

    Get PDF
    We have determined the acoustic and microwave frequencies of a misaligned spherical resonator maintained near the temperature of the triple point of water and filled with helium with carefully characterized molar mass M = (4.002 6032 ± 0.000 0015) g mol-1, with a relative standard uncertainty ur(M) = 0.37×10-6. From these data and traceable thermometry we estimate the speed of sound in our sample of helium at TTPW = 273.16 K and zero pressure to be u0 2 = (945 710.45 ± 0.85) m2 s-2 and correspondingly deduce the value R = (8.314 4743 ± 0.000 0088) J mol-1 K-1 for the molar gas constant. We estimate the value k = R/NA = (1.380 6508 ± 0.000 0015) × 10-23 J K-1 for the Boltzmann constant using the currently accepted value of the Avogadro constant NA. These estimates of R and k, with a relative standard uncertainty of 1.06 × 10-6, are 1.47 parts in 106 above the values recommended by CODATA in 2010

    Determination of the thermodynamic temperature between 236 K and 430 K from speed of sound measurements in helium

    Get PDF
    We report speed of sound measurements in helium at 273.16 K and at eight temperatures in the range between 236 K and 430 K. These results determine the difference (T  −  T 90) between the thermodynamic temperature T and its approximation T 90 by the International Temperature Scale of 1990 (ITS-90). The uncertainty of our measurements of (T  −  T 90) spans between a minimum of 0.25 mK near 247 K and a maximum of 0.89 mK at the freezing point of indium (429.75 K) with comparable contributions from the uncertainty of our acoustic determination of T and from the uncertainty of our laboratory realization of ITS-90. On the overlapping temperature ranges these results are consistent with other recent acoustic determinations of (T  −  T 90). We also present evidence that (T  −  T 90) can be determined with comparably small uncertainties by the alternative, time-saving procedure of measuring the speed-of-sound in helium using only a single, judiciously-chosen, pressure on each isotherm

    Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water

    Get PDF
    partially_open6The Boltzmann constant k has been determined from a measurement of the speed of sound in helium gas in a quasi-spherical resonator (volume 0.5 l) maintained at a temperature close to the triple point of water (273.16 K). The acoustic velocity c is deduced from measured acoustic resonance frequencies and the dimensions of the quasi-sphere, the latter being obtained via simultaneous microwave resonance. Values of c are extrapolated to the zero pressure limit of ideal gas behaviour. We find J⋅K−1, a result consistent with previous measurements in our group and elsewhere. The value for k, which has a relative standard uncertainty of 1.02 ppm, lies 0.02 ppm below that of the CODATA 2010 adjustment.mixedPitre, L; Risegari, L; Sparasci, F; Plimmer, M D; Himbert, M E; Giuliano Albo, P APitre, L; Risegari, L; Sparasci, F; Plimmer, M D; Himbert, M E; Giuliano Albo, P

    IXO/XMS Detector Trade-Off Study

    Get PDF
    This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure

    Updated determination of the molar gas constant R by acoustic measurements in argon at UVa-CEM.

    Get PDF
    Producción CientíficaA new determination of the molar gas constant was performed from measurements of the speed of sound in argon at the triple point of water and extrapolation to zero pressure. A new resonant cavity was used. This is a triaxial ellipsoid whose walls are gold-coated steel and which is divided into two identical halves that are bolted and sealed with an O-ring. Microwave and electroacoustic traducers are located in the northern and southern parts of the cavity, respectively, so that measurements of microwave and acoustic frequencies are carried out in the same experiment. Measurements were taken at pressures from 600 kPa to 60 kPa and at 273.16 K. The internal equivalent radius of the cavity was accurately determined by microwave measurements and the first four radial symmetric acoustic modes were simultaneously measured and used to calculate the speed of sound. The improvements made using the new cavity have reduced by half the main contributions to the uncertainty due to the radius determination using microwave measurements which amounts to 4.7 parts in 106 and the acoustic measurements, 4.4 parts in 106, where the main contribution (3.7 parts in 106) is the relative excess half-widths associated with the limit of our acoustic model, compared with our previous measurements. As a result of all the improvements with the new cavity and the measurements performed, we determined the molar gas constant R = (8.314449 0.000056) J·K-1·mol-1 which corresponds to a relative standard uncertainty of 6.7 parts in 106. The value reported in this paper lies -1.3 parts in 106 below the recommended value of CODATA 2014, although still within the range consistent with it.2018-08-10MEC ENE2013-47812-RJunta de Castilla y León VA035U1
    corecore