110 research outputs found

    Analysis and Improvement of the securing RFID systems conforming to EPC Class 1 Generation 2 standard

    Get PDF
    Radio Frequency IDentification (RFID) technology is a wireless identification method in which security and privacy are important parameters for public acceptance and widespread use. In order to thwart such security and privacy problems, a wide variety of authentication protocols have been proposed in the literature. In 2010, Yeh et al’s proposed a new RFID authentication protocol conforming to EPC Class 1 Generation 2 standard. They claimed that this protocol is secure against DoS attack, replay attack, DATA forgery attack, and provides untraceability and forward secrecy. In 2012, Yoon showed that this protocol does not provide forward secrecy and DATA integrity. He improved the protocol and tried to eliminate the weaknesses and claimd that the improved protocol does not have the weaknesses of the primary protocol. In this paper, we show that the improved protocol has some weaknesses including DoS attack, back-end server impersonation, tag impersonation and DATA forgery attack. We also show that it can not provide forward secrecy of the reader and untraceability. We improve the protocol, which offers a high level of security and provides mutual authentication, untraceability and forward secrecy as well as resistance to DATA forgery, replay and DoS attacks, while retaining a competitive communication cost

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Full text link
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Get PDF
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Game-Based Cryptanalysis of a Lightweight CRC-Based Authentication Protocol for EPC Tags

    Get PDF
    The term Internet of Things (IoT) expresses a huge network of smart and connected objects which can interact with other devices without our interposition. Radio frequency identification (RFID) is a great technology and an interesting candidate to provide communications for IoT networks, but numerous security and privacy issues need to be considered. In this paper, we analyze the security and the privacy of a new RFID authentication protocol proposed by Shi et al. in 2014. We prove that although Shi et al. have tried to present a secure and untraceable authentication protocol, their protocol still suffers from several security and privacy weaknesses which make it vulnerable to various security and privacy attacks. We present our privacy analysis based on a well-known formal privacy model which is presented by Ouafi and Phan in 2008. Moreover, to stop such attacks on the protocol and increase the performance of Shi et al.’s scheme, we present some modifications and propound an improved version of the protocol. Finally, the security and the privacy of the proposed protocol were analyzed against various attacks

    On the security of another CRC based ultralightweight RFID authentication protocol

    Get PDF
    Design of ultra-lightweight authentication protocols for RFID systems conformed with the EPC Class-1 Generation-2 standard is still a challenging issue in RFID security. Recently, Maurya et al. have proposed a CRC based authentication protocol and claimed that their protocol can resist against all known attacks in RFID systems. However, in this paper we show that their protocol is vulnerable to tag impersonation attack. Moreover, we show that how an attacker can easily trace a target RFID tag. Our analyses show that the success probability of our attacks is “1” while the complexity is only one session eavesdropping, two XORs and one CRC computation

    Mutual Authentication Protocol Model For Low-Cost RFID Systems Based On Shelled Random Value

    Get PDF
    Designing a reliable secure low-cost protocol for radio-frequency identification (RFID) is difficult, standard cryptographic primitives can become a limitation for low-cost tags due to their costly large requirements in terms of circuit size, power consumption, and memory size. Therefore, ultralightweight cryptography in designing low-cost RFID protocols capable of executing data communication sessions efficiently and effectively are needed to solve database loading, passive attacks, desynchronization and high computational cost problems

    Analysis of an RFID Authentication Protocol in Accordance with EPC Standards

    Get PDF
    In the past few years, the design of RFID authentication protocols in accordance with the EPC Class-1 Generation-2 (EPC C1 G2) standards, has been one of the most important challenges in the information security domain. Although RFID systems provide user-friendly services for end-users, they can make security and privacy concerns for them. In this paper we analyze the security of an RFID mutual authentication protocol which is based on EPC Class-1 Generation-2 standard and proposed in 2013. The designers of protocol claimed that their protocol is secure against different security attacks and provides user privacy. In this paper, we show that unlike their claims, their protocol is not secure against most of the security attacks such as replay attack, the tag’s ID exposure, and the spoofing attacks. As a result, their protocol cannot provide security of RFID users in different authentication applications. Finally, in order to prevent the aforementioned attacks and overcome all the existing weaknesses, we apply a modification in the updating procedure of the protocol and propose a strengthened version of it

    Prevention And Detection Mechanism For Security In Passive Rfid System

    Get PDF
    Low-cost radio frequency identification (RFID) tags conforming to the EPCglobal Class-1 Generation-2 standard are inherently insecure due to computational constraints. This thesis proposed the use of both prevention and detection mechanisms to solve the security and privacy issues. A lightweight cryptographic mutual authentication protocol which is resistant to tracking, denial of service (DoS) and replay attacks is proposed as a prevention mechanism. The proposed protocol is designed with lightweight cryptographic algorithm, including XOR, Hamming distance, rotation and a modified linear congruential generator (MLCG). The proposed protocol using 64 bits index is proved having the lowest non-unequivocally identification probability. In addition, the randomness of the session key generated from the MLCG is verified using NIST test suite. Besides that, the security of the proposed protocol is validated using the formal analysis tool, AVISPA. The correctness of the proposed protocol is demonstrated in a simulation model developed in JAVA TCP/IP socket. Next, the proposed protocol is implemented in RFID system including IAIK UHF Demo tag, TagSense Nano-UHF reader and back-end database. A GUI is created in a form of JAVA application to display data detected from tag. The proposed protocol implemented in real RFID system outperforms other related protocols because of 13.46 % shorter read time and write time consumed. The system is proved to be able to prevent tracking, DoS, and replay attacks from adversaries with moderate computation requirement compared to other related protocols
    corecore