385 research outputs found

    Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms

    Get PDF
    AbstractThis work proposes an improved particle swarm optimization (PSO) method to increase the measurement precision of multi-sensors data fusion in the Internet of Things (IOT) system. Critical IOT technologies consist of a wireless sensor network, RFID, various sensors and an embedded system. For multi-sensor data fusion computing systems, data aggregation is a main concern and can be formulated as a multiple dimensional based on particle swarm optimization approaches. The proposed improved PSO method can locate the minimizing solution to the objective cost function in multiple dimensional assignment themes, which are considered in particle swarm initiation, cross rules and mutation rules. The optimum seclusion can be searched for efficiently with respect to reducing the search range through validated candidate measures. Experimental results demonstrate that the proposed improved PSO method for multi-sensor data fusion is highly feasible for IOT system applications

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Spectrum Sensing and Mitigation of Primary User Emulation Attack in Cognitive Radio

    Get PDF
    The overwhelming growth of wireless communication has led to spectrum shortage issues. In recent days, cognitive radio (CR) has risen as a complete solution for the issue. It is an artificial intelligence-based radio which is capable of finding the free spectrum and utilises it by adapting itself to the environment. Hence, searching of the free spectrum becomes the key task of the cognitive radio termed as spectrum sensing. Some malicious users disrupt the decision-making ability of the cognitive radio. Proper selection of the spectrum scheme and decision-making capability of the cognitive reduces the chance of colliding with the primary user. This chapter discusses the suitable spectrum sensing scheme for low noise environment and a trilayered solution to mitigate the primary user emulation attack (PUEA) in the physical layer of the cognitive radio. The tag is generated in three ways. Sequences were generated using DNA and chaotic algorithm. These sequences are then used as the initial seed value for the generation of gold codes. The output of the generator is considered as the authentication tag. This tag is used to identify the malicious user, thereby PUEA is mitigated. Threat-free environment enables the cognitive radio to come up with a precise decision about the spectrum holes

    The Proceedings of 14th Australian Information Security Management Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fourteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Fifteen papers were submitted from Australia and overseas, of which ten were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conferences. To our sponsors also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Wireless Sensor Networks in Support of E-Health Applications

    Get PDF
    Nowadays, with the smart device developing and life quality improving, people’s requirement of real-time, fast, accurate and smart health service has been increased. As the technology advances, E-Health Care concept has been emerging in the last decades and received extensive attention. With the help of Internet and computing technologies, a lot of E-Health Systems have been proposed that change traditional medical treatment mode to remote or online medical treatment. Furthermore, due to the rapidly development of Internet and wireless network in recent years, many enhanced E-Health Systems based on Wireless Sensor Network have been proposed that open a new research field. This research work has reviewed the E-Health Care System development and limitations in recent years and proposes a novel E-Health System based on Wireless Sensor Network by taking the advantage of the latest technologies. The proposed E-Health System is a wireless and portable system, which consists of the Wireless E-Health Gateway and Wireless E-Health Sensor Nodes. The system has been further enhanced by Smart Technology that combined the advantages of the smart phone. The proposed system has change the mechanisms of traditional medical care and provide real-time, portable, accurate and flexible medical care services to users. With the E-Health System wieldy deployed, it requires powerful computing center to deal with the mass health record data. Cloud technology as an emerging technology has applied in the proposed system. This research has used Amazon Web Services (AWS) – Cloud Computing Services to develop a powerful, scalable and fast connection web service for proposed E-Health Management System. The security issue is a common problem in the wireless network, and it is more important for E-Health System as the personal health data is private and should be safely transferred and storage. Hence, this research work also focused on the cryptographic algorithm to reinforce the security of E-Health System. Due to the limitations of embedded system resources, such as: lower computing, smaller battery, and less memory, which cannot support modem advance encryption standard. In this research, Rivest Cipher Version 5 (RC5) as the simple, security and software or hardware deployable encryption algorithm has been in-depth studied. As the Logistic map has good cryptographic algorithm properties, like unpredictable, random, and sensitive to the initial parameters it has been investigated. In this thesis, an enhanced RC5 cryptographic algorithm has been proposed that uses 1-D Logistic mapping in the random sub-key generation during each encryption round, which increases the unpredictability significantly. In addition, an effective cipher feedback model has been combined to further increase the cipher security. After in-depth research of the 1-D Logistic map, a 2-D Logistic map has been proposed that provides more complex chaotic behaviors than the 1-D Logistic map and further improves the security. Another novel RC5 cryptographic algorithm with 2-D Logistic map has been proposed in this thesis. The proposed algorithm uses a 2-D Logistic map to generate the sub-key and modified RC5 operations to encrypt data. Appropriate experiments have been carried out to evaluate the performance. The results show the proposed algorithms are better than standard RC5 or other modified RC5. The contributions and innovation of this research project are summarized: • Build up a Wireless E-Health Care System based on Wireless Sensor Network. • Create the Cloud Management System for E-Health Care System. • Proposed RC5 cryptographic algorithms based on Logistic Map to increase the randomness and security of cipher data

    Comparative study of several operation modes of AES algorithm for encryption ECG biomedical signal

    Get PDF
    Biomedical signal processing provides a cross-disciplinary international forum through which research on signal and images measurement and analysis in clinical medicine as well as biological sciences is shared. Electrocardiography (ECG) signal is more frequently used for diagnosis of cardiovascular diseases. However, the ECG signals contain sensitive private health information as well as details that serve to individually distinguish patients. For this reason, the information must be encrypted prior to transmission across public media so as to prevent unauthorized access by adversaries. In this paper, the proposed the use of the Advanced Encryption Standard algorithm (AES), which is one of a symmetric key block cipher with lightweight properties for enhances confidentiality, integrity and authentication in ECG signal transmission. However, some of the challenges arising from the use of this algorithm are computational overhead and level of security, which occur when handling more complex.The AES algorithm has different operation modes using three different key sizes which can be utilized in encrypting the whole sample of ECG biomedical signal in electronic healthcare. The experiments in this research, exhibit comparative study of using five modes of operation in AES algorithm, which are coupled with three key sizes based on the execution time and security level for the encryption of ECG biomedical signals in electronic healthcare application. Thus, we reported that the CBC mode of the AES algorithm is suitable to be applied of security purpose
    • …
    corecore