599 research outputs found

    A Morphological Associative Memory Employing A Stored Pattern Independent Kernel Image and Its Hardware Model

    Get PDF
    An associative memory provides a convenient way for pattern retrieval and restoration, which has an important role for handling data distorted with noise. As an effective associative memory, we paid attention to a morphological associative memory (MAM) proposed by Ritter. The model is superior to ordinary associative memory models in terms of calculation amount, memory capacity, and perfect recall rate. However, in general, the kernel design becomes difficult as the stored pattern increases because the kernel uses a part of each stored pattern. In this paper, we propose a stored pattern independent kernel design method for the MAM and design the MAM employing the proposed kernel design with a standard digital manner in parallel architecture for acceleration. We confirm the validity of the proposed kernel design method by auto- and hetero-association experiments and investigate the efficiency of the hardware acceleration. A high-speed operation (more than 150 times in comparison with software execution) is achieved in the custom hardware. The proposed model works as an intelligent pre-processor for the Brain-Inspired Systems (Brain-IS) working in real world

    Formal concept matching and reinforcement learning in adaptive information retrieval

    Get PDF
    The superiority of the human brain in information retrieval (IR) tasks seems to come firstly from its ability to read and understand the concepts, ideas or meanings central to documents, in order to reason out the usefulness of documents to information needs, and secondly from its ability to learn from experience and be adaptive to the environment. In this work we attempt to incorporate these properties into the development of an IR model to improve document retrieval. We investigate the applicability of concept lattices, which are based on the theory of Formal Concept Analysis (FCA), to the representation of documents. This allows the use of more elegant representation units, as opposed to keywords, in order to better capture concepts/ideas expressed in natural language text. We also investigate the use of a reinforcement leaming strategy to learn and improve document representations, based on the information present in query statements and user relevance feedback. Features or concepts of each document/query, formulated using FCA, are weighted separately with respect to the documents they are in, and organised into separate concept lattices according to a subsumption relation. Furthen-nore, each concept lattice is encoded in a two-layer neural network structure known as a Bidirectional Associative Memory (BAM), for efficient manipulation of the concepts in the lattice representation. This avoids implementation drawbacks faced by other FCA-based approaches. Retrieval of a document for an information need is based on concept matching between concept lattice representations of a document and a query. The learning strategy works by making the similarity of relevant documents stronger and non-relevant documents weaker for each query, depending on the relevance judgements of the users on retrieved documents. Our approach is radically different to existing FCA-based approaches in the following respects: concept formulation; weight assignment to object-attribute pairs; the representation of each document in a separate concept lattice; and encoding concept lattices in BAM structures. Furthermore, in contrast to the traditional relevance feedback mechanism, our learning strategy makes use of relevance feedback information to enhance document representations, thus making the document representations dynamic and adaptive to the user interactions. The results obtained on the CISI, CACM and ASLIB Cranfield collections are presented and compared with published results. In particular, the performance of the system is shown to improve significantly as the system learns from experience.The School of Computing, University of Plymouth, UK

    Adaptive Methods for Robust Document Image Understanding

    Get PDF
    A vast amount of digital document material is continuously being produced as part of major digitization efforts around the world. In this context, generic and efficient automatic solutions for document image understanding represent a stringent necessity. We propose a generic framework for document image understanding systems, usable for practically any document types available in digital form. Following the introduced workflow, we shift our attention to each of the following processing stages in turn: quality assurance, image enhancement, color reduction and binarization, skew and orientation detection, page segmentation and logical layout analysis. We review the state of the art in each area, identify current defficiencies, point out promising directions and give specific guidelines for future investigation. We address some of the identified issues by means of novel algorithmic solutions putting special focus on generality, computational efficiency and the exploitation of all available sources of information. More specifically, we introduce the following original methods: a fully automatic detection of color reference targets in digitized material, accurate foreground extraction from color historical documents, font enhancement for hot metal typesetted prints, a theoretically optimal solution for the document binarization problem from both computational complexity- and threshold selection point of view, a layout-independent skew and orientation detection, a robust and versatile page segmentation method, a semi-automatic front page detection algorithm and a complete framework for article segmentation in periodical publications. The proposed methods are experimentally evaluated on large datasets consisting of real-life heterogeneous document scans. The obtained results show that a document understanding system combining these modules is able to robustly process a wide variety of documents with good overall accuracy

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Contributions of synaptic filters to models of synaptically stored memory

    No full text
    The question of how neural systems encode memories in one-shot without immediately disrupting previously stored information has puzzled theoretical neuroscientists for years and it is the central topic of this thesis. Previous attempts on this topic, have proposed that synapses probabilistically update in response to plasticity inducing stimuli to effectively delay the degradation of old memories in the face of ongoing memory storage. Indeed, experiments have shown that synapses do not immediately respond to plasticity inducing stimuli, since these must be presented many times before synaptic plasticity is expressed. Such a delay could be due to the stochastic nature of synaptic plasticity or perhaps because induction signals are integrated before overt strength changes occur.The later approach has been previously applied to control fluctuations in neural development by low-pass filtering induction signals before plasticity is expressed. In this thesis we consider memory dynamics in a mathematical model with synapses that integrate plasticity induction signals to a threshold before expressing plasticity. We report novel recall dynamics and considerable improvements in memory lifetimes against a prominent model of synaptically stored memory. With integrating synapses the memory trace initially rises before reaching a maximum and then falls. The memory signal dissociates into separate oblivescence and reminiscence components, with reminiscence initially dominating recall. Furthermore, we find that integrating synapses possess natural timescales that can be used to consider the transition to late-phase plasticity under spaced repetition patterns known to lead to optimal storage conditions. We find that threshold crossing statistics differentiate between massed and spaced memory repetition patterns. However, isolated integrative synapses obtain an insufficient statistical sample to detect the stimulation pattern within a few memory repetitions. We extend the modelto consider the cooperation of well-known intracellular signalling pathways in detecting storage conditions by utilizing the profile of postsynaptic depolarization. We find that neuron wide signalling and local synaptic signals can be combined to detect optimal storage conditions that lead to stable forms of plasticity in a synapse specific manner.These models can be further extended to consider heterosynaptic and neuromodulatory interactions for late-phase plasticity.<br/

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    corecore