147 research outputs found

    A Novel Fused Optimization Algorithm of Genetic Algorithm and Ant Colony Optimization

    Get PDF
    A novel fused algorithm that delivers the benefits of both genetic algorithms (GAs) and ant colony optimization (ACO) is proposed to solve the supplier selection problem. The proposed method combines the evolutionary effect of GAs and the cooperative effect of ACO. A GA with a great global converging rate aims to produce an initial optimum for allocating initial pheromones of ACO. An ACO with great parallelism and effective feedback is then served to obtain the optimal solution. In this paper, the approach has been applied to the supplier selection problem. By conducting a numerical experiment, parameters of ACO are optimized using a traditional method and another hybrid algorithm of a GA and ACO, and the results of the supplier selection problem demonstrate the quality and efficiency improvement of the novel fused method with optimal parameters, verifying its feasibility and effectiveness. Adopting a fused algorithm of a GA and ACO to solve the supplier selection problem is an innovative solution that presents a clear methodological contribution to optimization algorithm research and can serve as a practical approach and management reference for various companies

    The Use of Persistent Explorer Artificial Ants to Solve the Car Sequencing Problem

    Get PDF
    Ant Colony Optimisation is a widely researched meta-heuristic which uses the behaviour and pheromone laying activities of foraging ants to find paths through graphs. Since the early 1990’s this approach has been applied to problems such as the Travelling Salesman Problem, Quadratic Assignment Problem and Car Sequencing Problem to name a few. The ACO is not without its problems it tends to find good local optima and not good global optima. To solve this problem modifications have been made to the original ACO such as the Max Min ant system. Other solutions involve combining it with Evolutionary Algorithms to improve results. These improvements focused on the pheromone structures. Inspired by other swarm intelligence algorithms this work attempts to develop a new type of ant to explore different problem paths and thus improve the algorithm. The exploring ant would persist throughout the running time of the algorithm and explore unused paths. The Car Sequencing problem was chosen as a method to test the Exploring Ants. An existing algorithm was modified to implement the explorers. The results show that for the car sequencing problem the exploring ants did not have any positive impact, as the paths they chose were always sub-optimal

    Partner Selection and Job Shop Scheduling for Virtual Enterprises

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hybridization of Biologically Inspired Algorithms for Discrete Optimisation Problems

    Get PDF
    In the field of Optimization Algorithms, despite the popularity of hybrid designs, not enough consideration has been given to hybridization strategies. This paper aims to raise awareness of the benefits that such a study can bring. It does this by conducting a systematic review of popular algorithms used for optimization, within the context of Combinatorial Optimization Problems. Then, a comparative analysis is performed between Hybrid and Base versions of the algorithms to demonstrate an increase in optimization performance when hybridization is employed

    PB-NTP-09

    Get PDF

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    BP-AS-03

    Get PDF

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore