86 research outputs found

    Language Model Applications to Spelling with Brain-Computer Interfaces

    Get PDF
    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models appli

    A Novel Audiovisual P300-Speller Paradigm Based on Cross-Modal Spatial and Semantic Congruence

    Get PDF
    Objective: Although many studies have attempted to improve the performance of the visual-based P300-speller system, its performance is still not satisfactory. The current system has limitations for patients with neurodegenerative diseases, in which muscular control of the eyes may be impaired or deteriorate over time. Some studies have shown that the audiovisual stimuli with spatial and semantic congruence elicited larger event-related potential (ERP) amplitudes than do unimodal visual stimuli. Therefore, this study proposed a novel multisensory P300-speller based on audiovisual spatial and semantic congruence. Methods: We designed a novel audiovisual P300-speller paradigm (AV spelling paradigm) in which the pronunciation and visual presentation of characters were matched in spatial position and semantics. We analyzed the ERP waveforms elicited in the AV spelling paradigm and visual-based spelling paradigm (V spelling paradigm) and compared the classification accuracies between these two paradigms. Results: ERP analysis revealed significant differences in ERP amplitudes between the two paradigms in the following areas (AV \u3e V): the frontal area at 60–140 ms, frontal–central–parietal area at 360–460 ms, frontal area at 700–800 ms, right temporal area at 380–480 and 700–780 ms, and left temporal area at 500–780 ms. Offline classification results showed that the accuracies were significantly higher in the AV spelling paradigm than in the V spelling paradigm after superposing 1, 2, 5, 6, 9, and 10 times (P \u3c 0.05), and there were trends toward improvement in the accuracies at superposing 3, 4, 7, and 8 times (P = 0.06). Similar results were found for information transfer rate between V and AV spelling paradigms at 1, 2, 5, 6, and 10 superposition times (P \u3c 0.05). Significance: The proposed audiovisual P300-speller paradigm significantly improved the classification accuracies compared with the visual-based P300-speller paradigm. Our novel paradigm combines spatial and semantic features of two sensory modalities, and the present findings provide valuable insights into the development of multimodal ERP-based BCI paradigms

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Application of P300 Event-Related Potential in Brain-Computer Interface

    Get PDF
    The primary purpose of this chapter is to demonstrate one of the applications of P300 event-related potential (ERP), i.e., brain-computer interface (BCI). Researchers and students will find the chapter appealing with a preliminary description of P300 ERP. This chapter also appreciates the importance and advantages of noninvasive ERP technique. In noninvasive BCI, the P300 ERPs are extracted from brain electrical activities [electroencephalogram (EEG)] as a signature of the underlying electrophysiological mechanism of brain responses to the external or internal changes and events. As the chapter proceeds, topics are covered on more relevant scholarly works about challenges and new directions in P300 BCI. Along with these, articles with the references on the advancement of this technique will be presented to ensure that the scholarly reviews are accessible to people who are new to this field. To enhance fundamental understanding, stimulation as well as signal processing methods will be discussed from some novel works with a comparison of the associated results. This chapter will meet the need for a concise and practical description of basic, as well as advanced P300 ERP techniques, which is suitable for a broad range of researchers extending from today’s novice to an experienced cognitive researcher

    A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI

    Get PDF
    This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Incorporation of a language model into a brain computer interface based speller

    Get PDF
    Brain computer interface (BCI) research deals with the problem of establishing direct communication pathways between the brain and external devices. The primary motivation is to enable patients with limited or no muscular control to use external devices by automatically interpreting their intent based on brain electrical activity, measured by, e.g., electroencephalography (EEG). The P300 speller is a widely practised BCI set up that involves having subjects type letters based on P300 signals generated by their brains in response to visual stimuli. Because of the low signal-to-noise ratio (SNR) and variability of EEG signals, existing typing systems use many repetitions of the visual stimuli in order to increase accuracy at the cost of speed. The main motivation for the work in this thesis comes from the observation that the prior information provided by both neighbouring and current letters within words in a particular language can assist letter estimation with the aim of developing a system that achieves higher accuracy and speed simultaneously. Based on this observation, in this thesis, we present an approach for incorporation of such information into a BCI-based speller through Hidden Markov Models (HMM) trained by a language model. We then describe filtering and smoothing algorithms in conjunction with n-gram language models for inference over such a model. We have designed data collection experiments for offline and online decision-making which demonstrate that incorporation of the language model in this manner results in significant improvements in letter estimation and typing speed

    Utilizing Visual Attention and Inclination to Facilitate Brain-Computer Interface Design in an Amyotrophic Lateral Sclerosis Sample

    Get PDF
    Individuals who suffer from amyotrophic lateral sclerosis (ALS) have a loss of motor control and possibly the loss of speech. A brain-computer interface (BCI) provides a means for communication through nonmuscular control. Visual BCIs have shown the highest potential when compared to other modalities; nonetheless, visual attention concepts are largely ignored during the development of BCI paradigms. Additionally, individual performance differences and personal preference are not considered in paradigm development. The traditional method to discover the best paradigm for the individual user is trial and error. Visual attention research and personal preference provide the building blocks and guidelines to develop a successful paradigm. This study is an examination of a BCI-based visual attention assessment in an ALS sample. This assessment takes into account the individual’s visual attention characteristics, performance, and personal preference to select a paradigm. The resulting paradigm is optimized to the individual and then tested online against the traditional row-column paradigm. The optimal paradigm had superior performance and preference scores over row-column. These results show that the BCI needs to be calibrated to individual differences in order to obtain the best paradigm for an end user

    Performance assessment in brain-computer interface-based augmentative and alternative communication

    Full text link
    Abstract A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems.http://deepblue.lib.umich.edu/bitstream/2027.42/115465/1/12938_2012_Article_658.pd
    corecore