43 research outputs found

    Enhancing the BER and ACLR for the HPA Using Pre-Distortion Technique

    Get PDF
    Power amplifiers are key components in wireless transceivers. Their function is to amplify signal and generate the required Radio Frequency (RF) power that allows to transmit the signal over an appropriate range. The Orthogonal Frequency Division Multiplexing (OFDM) systems are highly sensitive to nonlinear distortion introduced by High Power Amplifier (HPA). The HPA nonlinearity causes in-band and out-of-band distortions. The linearization techniques are used to compensate the nonlinear effects of the high power amplifier. These techniques correct the distortion effects resulting from nonlinearities in the transmitted signal. Many linearization techniques have been developed to improve power amplifier linearity and to decrease both Bit Error Rate (BER) and Adjacent Channel Leakage Ratio (ACLR). This work is set to run the high power amplifier in the nonlinear region. It is also attempting to analyze the resulting signal in terms of the BER and ACLR, next employs pre-distortion linearization techniques to reduce the distortion introduced in this region. According to Digital Video Broadcasting-Terrestrial (DVB-T) standard the linearization techniques, circuit and the OFDM transmitter and receiver is designed and implemented through using computer simulation of AWR Design Environment

    Non-linearized amplifier and advanced mitigation techniques: DVB-S2X spectral efficiency improvement

    Get PDF
    The latest standardization DVB-S2X increases the achievable spectral efficiency of the satellite communications by around 15% in AWGN channel. In order to benefit from those improvements, the strong non-linear distortions introduced by the payload have to be overcome, mostly taking high back-off on the amplifier operation point. Nowadays, on- board amplifiers are linearized before being deployed, allowing low-complexity transmitters and receivers at the detriment of the payload's cost and reduced energy efficiency. In this paper, various techniques are investigated for the purpose of spectral efficiency improvement while releasing the amplifier linearization constraint. Iterative pre-distortion at the transmitter, turbo- equalization at the receiver and appropriate waveforms for transmission through non-linearized payload appear as strong candidates considering the results of this study

    Effects of Spreading Sequences on the Performance of MC-CDMA System with Nonlinear Models of HPA

    Get PDF
    Performance evaluation and comparison of multi-carrier code division multiple access (MC-CDMA) system model for different spreading sequences at the presence of Saleh and Rapp model of high power amplifier (HPA) is investigated. Nonlinear amplification introduces degradation of bit error performance and destroys the orthogonality among subcarriers. In order to avoid performance degradation without requiring extremely large backoffs in the transmitter amplifier, it becomes convenient to use nonlinear multi-user detection techniques at the receiver side. In order to illustrate this fact, microstatistic multi-user receiver (MSF-MUD) and conventional minimum mean square error receiver (MMSE-MUD) are considered and mutually compared. The results of our analyses based on computer simulations will show very clearly, that the application of nonlinear MSF-MUD in combination with Golay codes can provide significantly better results than the other tested spreading codes and receivers. Besides this fact, a failure of Walsh codes especially at the Saleh model of HPA will be outlined by using constellation diagram

    Distortion in RF Power Amplifiers and Adaptive Digital Base-Band Predistortion

    Get PDF
    International audienc
    corecore