74 research outputs found

    Ammonia for power

    Get PDF
    A potential enabler of a low carbon economy is the energy vector hydrogen. However, issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence, other indirect storage media such as ammonia and methanol are currently being considered. Of these, ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence, it is proposed that ammonia, with its established transportation network and high flexibility, could provide a practical next generation system for energy transportation, storage and use for power generation. Therefore, this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications, emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal, fuel cells, reciprocating engines, gas turbines and propulsion technologies, with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends

    Microgrid optimization, modelling and control

    Get PDF
    2014 Fall.To view the abstract, please see the full text of the document

    Design of control tools for use in microgrid simulations

    Get PDF
    2018 Summer.Includes bibliographical references.New technologies are transforming the way electricity is delivered and consumed. In the past two decades, a large amount of research has been done on smart grids and microgrids. This can be attributed to two factors. First is the poliferation of internet. Internet today is as ubiquitous as electricity. This has spawned a new area of technology called the internet of things (IoT). It gives us the ability to connect almost any device to the internet and harness the data. IoT finds use in smart grids that allow utiliy companies to deliver electricity efficiently. The other factor is the advancement in renewable sources of electricty and high power semiconductors coupled with their decreasing cost. These new sources disrupt the traditional way of electicity production and delivery, putting an increased focus on distributed power generation and microgrids. A microgrid is different from a utility grid. The difference is in the size of the grid, power level, a variety of possible sources and the way these are tied together. These characteristics lead to some unique control challenges. Today's appliances and consumer goods are powered using a standardized AC power. Thus a microrid must deliver uninterrupted and high quality power while at the same time taking into account the vastly different nature of the microsurces that produce the power. This work describes control system tools for different power converters that will be used in simulating microgrids.\ Simulations are important tool for any researcher. It allows researchers to test their research and theories at a greatly reduced cost. The process of design, testing and verification is an iterative process. Simulations allow a cost effective method of doing research, substituting the actual process of building experimental systems. This greatly reduces the amount of manpower and capital investment. A microgrid consists of several building blocks. These building blocks can be categorized into microsources, energy stores, converters and the loads. Microsources are devices that produce electric power. For example, a photovoltaic panel is a mirosource that produces DC power. Converters act as an interface between microsources and the grid. The constituent chapters in the document describe microsources and converters. The chapters describe the underlying control system and the simulation model of the system designed in Simulink. Some of the tools described are derived from the MATLAB/Simulink Examples library. Original authors of the simulation models and systems have been duly credited. Colorado State University has a vibrant research community. The tools described in this thesis are geared to be used for research into microgrids. The tools are developed in a simulation software called Simulink. The tools would allow future researchers to rapidly build microgrid simulations and test new control system implementations etc. The research described in the thesis builds upon the research by Han on natural gas engine based microgrid. The control tools described here are used to construct a microgrid simulation. The microgrid is built around a natural gas engine. Due to the transport lag in delivering fuel, a natural gas engine exhibits significant deviation in the AC grid frequency when subjected to step load. The microgrid setup along with the control system described here, minimizes the frequency deviation, thus stabilizing the microgrid. Simulation results verify the working of the tools

    Review on ammonia as a potential fuel: from synthesis to economics

    Get PDF
    Ammonia, a molecule that is gaining more interest as a fueling vector, has been considered as a candidate to power transport, produce energy, and support heating applications for decades. However, the particular characteristics of the molecule always made it a chemical with low, if any, benefit once compared to conventional fossil fuels. Still, the current need to decarbonize our economy makes the search of new methods crucial to use chemicals, such as ammonia, that can be produced and employed without incurring in the emission of carbon oxides. Therefore, current efforts in this field are leading scientists, industries, and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis, this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector, moving through all of the steps in the production, distribution, utilization, safety, legal considerations, and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed, thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works, this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further, the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes, legal barriers that will be faced to achieve its deployment, safety and environmental considerations that impose a critical aspect for acceptance and wellbeing, and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein, this work sets the principles, research, practicalities, and future views of a transition toward a future where ammonia will be a major energy player

    Energy Academic Group Compilation of Abstracts 2012-2016

    Get PDF
    This report highlights the breadth of energy-related student research at NPS and reinforces the importance of energy as an integral aspect of today's Naval enterprise. The abstracts provided are from theses and a capstone project report completed by December 2012-March 2016 graduates.http://archive.org/details/energyacademicgr109454991

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Full text link

    Renewable Energy

    Get PDF
    The demand for secure, affordable and clean energy is a priority call to humanity. Challenges associated with conventional energy resources, such as depletion of fossil fuels, high costs and associated greenhouse gas emissions, have stimulated interests in renewable energy resources. For instance, there have been clear gaps and rushed thoughts about replacing fossil-fuel driven engines with electric vehicles without long-term plans for energy security and recycling approaches. This book aims to provide a clear vision to scientists, industrialists and policy makers on renewable energy resources, predicted challenges and emerging applications. It can be used to help produce new technologies for sustainable, connected and harvested energy. A clear response to economic growth and clean environment demands is also illustrated

    Enhancing transient performance of microgeneration-dense low voltage distribution networks

    Get PDF
    In addition to other measures such as energy saving, the adoption of microgeneration driven by renewable and low carbon energy resources is expected to have the potential to reduce losses associated with producing and delivering electricity, combat climate change and fuel poverty, and improve the overall system performance. However, incorporating a substantial volume of microgeneration within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amount of microgeneration among other decentralised resources to be controlled in the way that local constraints are mitigated and their aggregated response supports the wider system. In addition, the characteristic behaviour of connected microgeneration requires to be understood under different system conditions to ascertain measures of risk and resilience, and to ensure the benefits of microgeneration to be delivered. Therefore, this thesis provides three main valuable contributions of future attainment of sustainable power systems. Firstly, a new conceptual control structure for a system incorporating a high penetration of microgeneration and dynamic load is developed. Secondly, the resilience level of the host distribution network as well as the resilience levels of microgeneration during large transient disturbances is evaluated and quantified. Thirdly, a technical solution that can support enhanced transient stability of a large penetration of LV connected microgeneration is introduced and demonstrated. A control system structure concept based on “a cell concept” is introduced to manage the spread of heavy volumes of distributed energy resources (DERs) including microgeneration such that the useful features of DER units in support of the wider system can be exploited, and the threats to system performance presented by significant connection of passive and unpredictable DERs can be mitigated. The structure also provides simpler and better coordinated communication with DERs by allowing the inputs from DERs and groups of cells to be transferred as collective actions when it moves from a local to a wider system level. The anticipated transient performance problems surrounding the integration of microgeneration on a large basis within a typical urban distribution network are addressed. Three areas of studies are tackled; the increased fault level due to the present of microgeneration, the collective impact of LV connected microgeneration on traditional LV protection performance, and the system fault ride through capabilities of LV connected microgeneration interfaced by different technologies. The possible local impacts of unnecessary disconnection of large amount of microgeneration on the performance of the host distribution network are also quantified. The thesis proposes a network solution based on using resistive-type superconducting fault current limiters (RSFCLs) to prevent the impact of local transient disturbances from expanding and enhance the fault ride through capabilities of a high penetration of microgeneration connected to low voltage distribution networks. A new mathematical approach is developed within the thesis to identify at which condition RSFCL can be used as a significant device to maintain the transient stability of large numbers of LV connected microgeneration. The approach is based on equation solution to determine the minimum required value of the resistive element of RSFCL to maintain microgeneration transient stability, and at the same time additional headroom against switchgear short-circuit ratings is provided. Remote disturbances or a failure to clear remote faults quickly are shown to no longer result in complete unnecessary disconnection of substantial amount of microgeneration
    • …
    corecore