156 research outputs found

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced

    Understanding and Improving Locomotion: The Simultaneous Optimization of Motion and Morphology in Legged Robots

    Full text link
    There exist many open design questions in the field of legged robotics. Should leg extension and retraction occur with a knee or a prismatic joint? Will adding a compliant ankle lead to improved energetics compared to a point foot? Should quadrupeds have a flexible or a rigid spine? Should elastic elements in the actuation be placed in parallel or in series with the motors? Though these questions may seem basic, they are fundamentally difficult to approach. A robot with either discrete choice will likely need very different components and use very different motion to perform at its best. To make a fair comparison between two design variations, roboticists need to ask, is the best version of a robot with a discrete morphological variation better than the best version of a robot with the other variation? In this dissertation, I propose to answer these type of questions using an optimization based approach. Using numerical algorithms, I let a computer determine the best possible motion and best set of parameters for each design variation in order to be able to compare the best instance of each variation against each other. I developed and implemented that methodology to explore three primary robotic design questions. In the first, I asked if parallel or series elastic actuation is the more energetically economical choice for a legged robot. Looking at a variety of force and energy based cost functions, I mapped the optimal motion cost landscape as a function of configurable parameters in the hoppers. In the best case, the series configuration was more economical for an energy based cost function, and the parallel configuration was better for a force based cost function. I then took this work a step further and included the configurable parameters directly within the optimization on a model with gear friction. I found, for the most realistic cost function, the electrical work, that series was the better choice when the majority of the transmission was handled by a low-friction rotary-to-linear transmission. In the second design question, I extended this analysis to a two-dimensional monoped moving at a forward velocity with either parallel or series elastic actuation at the hip and leg. In general it was best to have a parallel elastic actuator at the hip, and a series elastic actuator at the leg. In the third design question, I asked if there is an energetic benefit to having an articulated spinal joint instead of a rigid spinal joint in a quadrupedal legged robot. I found that the answer was gait dependent. For symmetrical gaits, such as walking and trotting, the rigid and articulated spine models have similar energetic economy. For asymmetrical gaits, such as bounding and galloping, the articulated spine led to significant energy savings at high speeds. The combination of the above studies readily presents a methodology for simultaneously optimizing for motion and morphology in legged robots. Aside from giving insight into these specific design questions, the technique can also be extended to a variety of other design questions. The explorations in turn inform future hardware development by roboticists and help explain why animals in nature move in the ways that they do.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144074/1/yevyes_1.pd

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Study of design issues in a prototype lower-limb prosthesis - proof-of-concept in a 3D printed model

    Get PDF
    Dissertação de Mestrado Integrado em Engenharia Biomédica Ramo de Biomateriais, Reabilitação e BiomecânicaThe amputation of one or both lower limbs, which can be brought on by trauma, diabetes, or other vascular diseases, is an increasingly common occurrence, especially due to the increase in the number of cases of diabetes in the developed world. In Portugal alone 1300 amputations each year are attributed to diabetes. These amputations severely impact the mobility, self-esteem, and quality of life of the patients, a situation that can be alleviated via the installation of a lower limb prosthesis. Sadly, these prostheses are not yet capable of completely emulating a sound limb in an affordable fashion. In this dissertation, state-of-the-art research was carried out regarding the mechanics of human gait, both healthy and prosthetic. An investigation regarding the state-of-the-art research was also carried out regarding lower-limb prostheses, their evolution, mechanics, and prospects, as well as additive manufacturing techniques, and how they can be crucial to the development of affordable prostheses. Special attention was provided to the study of the leading edge of prostheses research, namely active prostheses, capable of generating and introducing energy into the human gait, rather than simply acting as passive devices. This dissertation follows up on previous work carried out in the BioWalk Project of Universidade do Minho’s BiRDLab: “Prosthetic Devices and Rehabilitation Solutions for the Lower Limbs Amputees”. This work consisted of the development of an active lower-limb prosthesis prototype, with the goal of providing an affordable, but functional, prosthesis for future testing with patients. However, the resulting prototype was laden with issues, such as excessive weight and an underpowered motor. As such, this work set out to identify these issues, design, implement and test modifications to the prosthesis to produce a satisfying prototype. Given the limited resources and facilities available, it was decided to work on a smaller model prosthesis installed in a bipedal robot, the DARwIn-OP, using it as proof-of-concept for modifications to be implemented in the BiRDLab prosthesis. Modifications were successfully implemented, chiefly among them a planetary gear-based reductor and a novel attachment mechanism built using additive manufacturing techniques. It is possible to conclude that there is a great potential in the implementation of additive manufacturing techniques in the development of affordable prosthesis.A amputação de um ou ambos os membros inferiores, que pode ser causada por trauma, diabetes, ou outras doenças vasculares, é um evento cada vez mais frequente, especialmente devido ao aumento do número de casos de diabetes no mundo desenvolvido. Em Portugal, 1300 amputações são atribuídas aos diabetes todos os anos. Estas amputações influenciam negativamente a mobilidade, autoestima e qualidade de vida dos pacientes, mas estes efeitos podem ser minimizados através da instalação de uma prótese de membro inferior. Infelizmente, estas próteses ainda não são capazes de emular completamente um membro saudável de forma económica. Nesta dissertação, um estado da arte do caminhar humano foi realizado, tendo em atenção o funcionamento deste, quer em sujeitos saudáveis ou amputados. Um estado da arte também foi realizado relativamente às próteses de membros inferiores, a sua evolução, funcionamento, e perspetivas futuras, e também relativamente a técnicas de fabrico aditivas e a forma como estas podem ser aplicadas em próteses acessíveis. Tomou-se atenção especial ao estudo das próteses ativas, capazes de gerar e introduzir energia no caminhar, ao invés das próteses passivas tradicionais. Esta dissertação baseia-se em trabalho prévio ao abrigo do projeto BioWalk do laboratório BiRDLab da Universidade do Minho: “Dispositivos prostéticos e soluções de reabilitação para amputados dos membros inferiores”. Este trabalho consistiu no desenvolvimento de um protótipo de prótese de membro inferior ativa, com o objetivo de criar uma prótese de baixo custo para testes em pacientes. No entanto, o protótipo produzido possuí vários problemas, tais como peso excessivo e um motor subdimensionado. Assim sendo, este trabalho propôs-se a identificar estes problemas e a desenhar, implementar, e testar modificações. Tendo em conta os limitados recursos disponíveis, decidiu-se trabalhar numa prótese modelo mais pequena, instalada num robô bipedal, o DARwIN-OP, e a usá-la para testar modificações a implementar na prótese do BiRDLab. As modificações foram implementadas com sucesso, especialmente um redutor de engrenagens planetárias e um novo método de conectar a prótese, usando técnicas de fabrico aditivas

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Design and Control of Compliant Actuation Topologies for Energy-Efficient Articulated Robots

    Get PDF
    Considerable advances have been made in the field of robotic actuation in recent years. At the heart of this has been increased use of compliance. Arguably the most common approach is that of Series-Elastic Actuation (SEA), and SEAs have evolved to become the core component of many articulated robots. Another approach is integration of compliance in parallel to the main actuation, referred to as Parallel- Elastic Actuation (PEA). A wide variety of such systems has been proposed. While both approaches have demonstrated significant potential benefits, a number of key challenges remain with regards to the design and control of such actuators. This thesis addresses some of the challenges that exist in design and control of compliant actuation systems. First, it investigates the design, dynamics, and control of SEAs as the core components of next-generation robots. We consider the influence of selected physical stiffness on torque controllability and backdrivability, and propose an optimality criterion for impedance rendering. Furthermore, we consider disturbance observers for robust torque control. Simulation studies and experimental data validate the analyses. Secondly, this work investigates augmentation of articulated robots with adjustable parallel compliance and multi-articulated actuation for increased energy efficiency. Particularly, design optimisation of parallel compliance topologies with adjustable pretension is proposed, including multi-articulated arrangements. Novel control strategies are developed for such systems. To validate the proposed concepts, novel hardware is designed, simulation studies are performed, and experimental data of two platforms are provided, that show the benefits over state-of-the-art SEA-only based actuatio

    Biped Locomotion: Stability analysis, gait generation and control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well
    corecore