9 research outputs found

    Advancements in left ventricular assist devices to prevent pump thrombosis and blood coagulopathy

    Get PDF
    Mechanical circulatory support (MCS) devices, such as left ventricular assist devices (LVADs) are very useful in improving outcomes in patients with advanced-stage heart failure. Despite recent advances in LVAD development, pump thrombosis is one of the most severe adverse events caused by LVADs. The contact of blood with artificial materials of LVAD pumps and cannulas triggers the coagulation cascade. Heat spots, for example, produced by mechanical bearings are often subjected to thrombus build-up when low-flow situations impair washout and thus the necessary cooling does not happen. The formation of thrombus in an LVAD may compromise its function, causing a drop in flow and pumping power leading to failure of the LVAD, if left unattended. If a clot becomes dislodged and circulates in the bloodstream, it may disturb the flow or occlude the blood vessels in vital organs and cause internal damage that could be fatal, for example, ischemic stroke. That is why patients with LVADs are on anti-coagulant medication. However, the anti-coagulants can cause a set of issues for the patient-an example of gastrointestinal (GI) bleeding is given in illustration. On account of this, these devices are only used as a last resort in clinical practice. It is, therefore, necessary to develop devices with better mechanics of blood flow, performance and hemocompatibility. This paper discusses the development of LVADs through landmark clinical trials in detail and describes the evolution of device design to reduce the risk of pump thrombosis and achieve better hemocompatibility. Whilst driveline infection, right heart failure and arrhythmias have been recognised as LVAD-related complications, this paper focuses on complications related to pump thrombosis, especially blood coagulopathy in detail and potential strategies to mitigate this complication. Furthermore, it also discusses the LVAD implantation techniques and their anatomical challenges

    Mechanical Circulatory Support in End-Stage Heart Failure

    Get PDF

    From Benchtop to Beside: Patient-specific Outcomes Explained by Invitro Experiment

    Get PDF
    Study: Recent analyses show that females have higher early postoperative (PO) mortality and right ventricular failure (RVF) than males after left ventricular assist device (LVAD) implantation; and that this association is partially mediated by smaller LV size in females. Benchtop experiments allow us to investigate patient-specific (PS) characteristics in a reproducible way given the fact that the PS anatomy and physiology is mimicked accurately. With multiple heart models of varying LV size, we can directly study the individual effects of titrating the LVAD speed and the resulting bi-ventricular volumes, shedding light on the interplay between LV and RV as well as resulting inter-ventricular septum (IVS) positions, which may cause the different outcomes pertaining to sex. Methods: In vitro, we studied the impact of the heart size to IVS position using two smaller and two larger sized PS silicone heart phantoms derived from clinical CT images (Fig. 1A). With ultrasound crystals that were integrated on a placeholder inflow cannula, the IVS position was measured during LV and RV volume changes (dV) mimicking varying ventricular loading states (Fig. 1B). Figure 1 A Two small (blue) and two large PS heart phantoms (orange) on B benchtop. C Median septum curvature results. LVEDD/LVV/RVV: LV enddiastolic diameter/LV and RV volume. Results: Going from small to large dV, at zero curvature, the septum starts to shift towards the left; for smaller hearts at dV = -40 mL and for larger hearts at dV = -50 mL (Fig. 1C). This result indicates that smaller hearts are more prone to an IVS shift to the left than larger hearts. We conclude that smaller LV size may therefore mediate increased early PO LVAD mortality and RVF observed in females compared to males. Novel 3D silicone printing technology enables us to study accurate, PS heart models across a heterogeneous patient population. PS relationships can be studied simultaneously to clinical assessments and support the decision-making prior to LVAD implantation

    Immunological and hemostatic responses to ventricular assist device support

    Get PDF
    Ventricular assist devices (VADs) are critical in the treatment of advanced heart failure, but continue to be plagued by infection, bleeding and thrombosis. Immunity may be affected by VADs, though most paradigms were developed in older-generation pumps and may not currently be applicable. Similarly, hemostasis and platelets may be impacted by device type, though the patient’s health may also influence outcomes. Temporal immune cell activation and thrombosis biomarkers levels were evaluated across several contemporary pumps. This relationship was further studied in vitro through development of a method for visualizing cellular deposition onto opaque materials. An improved understanding of the cellular effects of VADs was sought through a comparative evaluation of these pumps, and this understanding may aid in the development of predictive indices of adverse events and influence future device design. Patients implanted with a currently-utilized VAD did not experience changes to adaptive immunity reported with previous-generation devices. However, infection was still an ongoing risk for these patients. Further investigation found the impact of VADs on immunity was greater than that of similar surgeries, especially among innate immunity. Granulocyte activation was elevated following VAD implantation, and was significantly pronounced in one model, suggesting an influence of design on immune cells. Granulocyte activation promotes extravasation and apoptosis, suggesting a pathway for decreased cellular immunity. Pre-operative hepatic dysfunction had immediate and long lasting hemostatic effects on VAD patients. Model for End-stage Liver Disease (MELD) score was found to be a positive pre-operative predictor of post-implant bleeding, blood product consumption and elevation of thrombosis biomarkers. MELD score was also found to be a stronger predictor of immediate post-operative bleeding than device type, underscoring the importance of patient pre-operative health on post-operative outcomes. With this difficult hemostatic environment, improvement of the blood-contacting surfaces of rotary VADs may reduce complications. A flow chamber for real-time visualization of platelet deposition onto surfaces of opaque VAD materials under physiologically-relevant conditions was developed. This was accomplished through the novel combination of fluorescently-marked platelet-rich-plasma and translucent hemoglobin-depleted red blood cells. This method enables the hemocompatibility assessment of a wide range of implantable materials

    Towards patient-specific modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps

    Get PDF
    Background: Ventricular Assist Devices (VADs) insertion is an established treatment for patients with end-stage heart failure waiting for a heart transplant or in need for long-term circulatory support (destination therapy). Rotary blood pumps (RBP) are the most popular devices in view of their size and performance. Pre-operative planning strategy for the insertion of a left ventricular assist device (LVAD) requires a timely discussion at a Multi-Disciplinary Team Meeting (MDT). Clinical-decision making is based according to the needs of the patient and must be processed without delays. Nevertheless, thrombus formation remains a feared complication which affects outcome. VADs operate in a flow regime which is difficult to simulate: the transitional region at the boundary of laminar and turbulent flow (low Reynolds number). Different methods have been used but the best approach remains debatable. Computational Fluid Dynamics (CFD) is an attractive and invaluable tool for the study of the interactions between VADs and the cardiovascular system. The aim of this thesis is three-fold: a) to investigate the use of pressure-volume analysis in a clinical setting through the review of six heart failure patients previously discussed at a MDT meeting with a view to predict or guide further management; b) to review the theory behind modelling approaches to VADs and their interactions with the cardiovascular system for better understanding of their clinical use. Then, an overview of computational fluid dynamics (CFD) is considered as a prelude to its application to the analysis of VADs performance. Additionally, the development of a simplified model of centrifugal pump will be used in initial simulations as preliminary analysis; c) to examine an example of a proof-of-concept pilot patient-specific model of an axial flow pump (HeartMate II) as pre-operative planning strategy in a patient-specific model with a view to identify potential critical areas that may affect pump function and outcome in a clinical setting. Material and Methods: 3D reconstruction from CT-scan images of patients who underwent the insertion of rotary blood pumps, namely HeartWare HVAD and HeartMate II. Ansys Fluent has been used for CFD analysis based on the fundamental governing equations of motion. Blood has been modelled as incompressible, Newtonian fluid with density = 1060 and viscosity = 0.0035 kg/m-s. The laminar and SST models have been used for comparison purposes. The rotational motion of the impeller has been implemented using the moving reference frame (MRF) approach. The sliding mesh method has also been used to account for unsteady interaction between stationary and moving part. The no-slip condition has been applied to all walls, which were assumed to be rigid. Boundary conditions consisting of velocity inlet and pressure outlet of the pump based on different settings and constant rotational speed for the impeller. Pressure-velocity coupling has been based on the coupled scheme. Spatial discretisation consisted of the “least square cell based” gradient for velocity and “PRESTO” or second order for pressure. Second order upwind has been set for the momentum, turbulent kinetic energy and specific dissipation rate. First order implicit has been set for transient formulation. The pseudo transient algorithm (steady state), the high order relaxation term and the warped-face gradient correction have been used to add an unsteady term to the solution equations with the aim to improve stability and enhance convergence. Specific settings have been considered for comparison purposes. Results: Pressure-volume simulation analysis in six advanced heart failure patients showed that an integrated model of the cardiovascular system based on lumped-parameter representation, modified time-varying elastance and pressure-volume analysis of ventricular function seems a feasible and suitable approach yielding a sufficiently accurate quantitative analysis in real time, therefore applicable within the time-constraints of a clinical setting. Lumped-parameter models consist of simultaneous ordinary differential equations complemented by an algebraic balance equation and are suitable for examination of global distribution of pressure, flow and volume over a range of physiological conditions with inclusion of the interaction between modelled components. Higher level lumped-parameter modelling is needed to address the interaction between the circulation and other systems based on a compromise between complexity and ability to set the required parameters to personalise an integrated lumped-parameter model for a patient-specific approach. CARDIOSIM© fulfils these requirements and does address the systems interaction with its modular approach and assembly of models with varying degree of complexity although 0-D and 1-D coupling may be required for the evaluation of long-term VAD support. The challenge remains the ability to predict outcome over a longer period of time. The preliminary CFD simulations with the HeartWare HVAD centrifugal pump demonstrated that it is possible to obtain an accurate analysis in a timely manner to complement the clinical review process. The simulations with the pilot patient-specific model of the HeartMate II axial flow pump revealed that a complex 3D reconstruction is feasible in a timely manner and can be used to generate sufficiently accurate results to be used in the context of a MDT meeting for the purposes of clinical decision-making. Overall, these three studies demonstrate that the time frame of the simulations was within hours which may fit the time constraints of the clinical environment in the context of a MDT meeting. More specifically, it was shown that the laminar model may be used for an initial evaluation of the flow development within the pump. Nonetheless, the k- model offers higher accuracy if the timeline of the clinical setting allows for a longer simulation. Conclusion: This thesis aimed at the understanding of the use of computational modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps. The novelty lays in the use of both pressure-volume simulation analysis and 3D flow dynamics studies in VADs with a view to treatment optimisation and outcome prediction within the time constraints of a clinical setting in the context of a MDT meeting. The clinical significance and the contribution to the field is a more targeted approach for different groups of patients and a more quantitative evaluation in the clinical decision process based on a pro-active co-operation between clinicians and scientists reducing the potential for “guess work”. The results of this thesis are a proof-of-concept as a prelude to a potential future implementation of patient-specific modelling within a clinical setting on a daily basis demonstrating a clear clinical significance and contribution to the field. The proposed approach does not consider modelling and simulation as a substitute for clinical experience but an additional tool to guide therapeutic intervention and complement the clinical decision process in which the clinician remains the ultimate decision-maker. Such an approach may well add a different dimension to the problem of heart failure with potential for high return in terms of patient’s outcome and long-term surveillance. The same principles would be applicable to other cardiovascular problems in line with the current concept of “Team Approach” such as the Heart Team, the Structural Heart Team or the Aortic Team. The present work has taken this concept closer to clinical delivery and has highlighted its potential but further work remains to be done in refining the technique.Background: Ventricular Assist Devices (VADs) insertion is an established treatment for patients with end-stage heart failure waiting for a heart transplant or in need for long-term circulatory support (destination therapy). Rotary blood pumps (RBP) are the most popular devices in view of their size and performance. Pre-operative planning strategy for the insertion of a left ventricular assist device (LVAD) requires a timely discussion at a Multi-Disciplinary Team Meeting (MDT). Clinical-decision making is based according to the needs of the patient and must be processed without delays. Nevertheless, thrombus formation remains a feared complication which affects outcome. VADs operate in a flow regime which is difficult to simulate: the transitional region at the boundary of laminar and turbulent flow (low Reynolds number). Different methods have been used but the best approach remains debatable. Computational Fluid Dynamics (CFD) is an attractive and invaluable tool for the study of the interactions between VADs and the cardiovascular system. The aim of this thesis is three-fold: a) to investigate the use of pressure-volume analysis in a clinical setting through the review of six heart failure patients previously discussed at a MDT meeting with a view to predict or guide further management; b) to review the theory behind modelling approaches to VADs and their interactions with the cardiovascular system for better understanding of their clinical use. Then, an overview of computational fluid dynamics (CFD) is considered as a prelude to its application to the analysis of VADs performance. Additionally, the development of a simplified model of centrifugal pump will be used in initial simulations as preliminary analysis; c) to examine an example of a proof-of-concept pilot patient-specific model of an axial flow pump (HeartMate II) as pre-operative planning strategy in a patient-specific model with a view to identify potential critical areas that may affect pump function and outcome in a clinical setting. Material and Methods: 3D reconstruction from CT-scan images of patients who underwent the insertion of rotary blood pumps, namely HeartWare HVAD and HeartMate II. Ansys Fluent has been used for CFD analysis based on the fundamental governing equations of motion. Blood has been modelled as incompressible, Newtonian fluid with density = 1060 and viscosity = 0.0035 kg/m-s. The laminar and SST models have been used for comparison purposes. The rotational motion of the impeller has been implemented using the moving reference frame (MRF) approach. The sliding mesh method has also been used to account for unsteady interaction between stationary and moving part. The no-slip condition has been applied to all walls, which were assumed to be rigid. Boundary conditions consisting of velocity inlet and pressure outlet of the pump based on different settings and constant rotational speed for the impeller. Pressure-velocity coupling has been based on the coupled scheme. Spatial discretisation consisted of the “least square cell based” gradient for velocity and “PRESTO” or second order for pressure. Second order upwind has been set for the momentum, turbulent kinetic energy and specific dissipation rate. First order implicit has been set for transient formulation. The pseudo transient algorithm (steady state), the high order relaxation term and the warped-face gradient correction have been used to add an unsteady term to the solution equations with the aim to improve stability and enhance convergence. Specific settings have been considered for comparison purposes. Results: Pressure-volume simulation analysis in six advanced heart failure patients showed that an integrated model of the cardiovascular system based on lumped-parameter representation, modified time-varying elastance and pressure-volume analysis of ventricular function seems a feasible and suitable approach yielding a sufficiently accurate quantitative analysis in real time, therefore applicable within the time-constraints of a clinical setting. Lumped-parameter models consist of simultaneous ordinary differential equations complemented by an algebraic balance equation and are suitable for examination of global distribution of pressure, flow and volume over a range of physiological conditions with inclusion of the interaction between modelled components. Higher level lumped-parameter modelling is needed to address the interaction between the circulation and other systems based on a compromise between complexity and ability to set the required parameters to personalise an integrated lumped-parameter model for a patient-specific approach. CARDIOSIM© fulfils these requirements and does address the systems interaction with its modular approach and assembly of models with varying degree of complexity although 0-D and 1-D coupling may be required for the evaluation of long-term VAD support. The challenge remains the ability to predict outcome over a longer period of time. The preliminary CFD simulations with the HeartWare HVAD centrifugal pump demonstrated that it is possible to obtain an accurate analysis in a timely manner to complement the clinical review process. The simulations with the pilot patient-specific model of the HeartMate II axial flow pump revealed that a complex 3D reconstruction is feasible in a timely manner and can be used to generate sufficiently accurate results to be used in the context of a MDT meeting for the purposes of clinical decision-making. Overall, these three studies demonstrate that the time frame of the simulations was within hours which may fit the time constraints of the clinical environment in the context of a MDT meeting. More specifically, it was shown that the laminar model may be used for an initial evaluation of the flow development within the pump. Nonetheless, the k- model offers higher accuracy if the timeline of the clinical setting allows for a longer simulation. Conclusion: This thesis aimed at the understanding of the use of computational modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps. The novelty lays in the use of both pressure-volume simulation analysis and 3D flow dynamics studies in VADs with a view to treatment optimisation and outcome prediction within the time constraints of a clinical setting in the context of a MDT meeting. The clinical significance and the contribution to the field is a more targeted approach for different groups of patients and a more quantitative evaluation in the clinical decision process based on a pro-active co-operation between clinicians and scientists reducing the potential for “guess work”. The results of this thesis are a proof-of-concept as a prelude to a potential future implementation of patient-specific modelling within a clinical setting on a daily basis demonstrating a clear clinical significance and contribution to the field. The proposed approach does not consider modelling and simulation as a substitute for clinical experience but an additional tool to guide therapeutic intervention and complement the clinical decision process in which the clinician remains the ultimate decision-maker. Such an approach may well add a different dimension to the problem of heart failure with potential for high return in terms of patient’s outcome and long-term surveillance. The same principles would be applicable to other cardiovascular problems in line with the current concept of “Team Approach” such as the Heart Team, the Structural Heart Team or the Aortic Team. The present work has taken this concept closer to clinical delivery and has highlighted its potential but further work remains to be done in refining the technique

    BIOMATERIALS: FROM SCAFFOLD DESIGN TO IMPLANT OPTIMIZATION

    Get PDF
    This work encompasses three individual projects concerning biomaterials and their modifications. Chemically-Induced Cross-Linking of Peptidic Fibrils for Scaffolding Polymeric Particles and Macrophages EAK16-II (EAK) is a self-assembling peptide (SAP) that forms β-sheets and βfibrils through ionic-complementary interactions at physiological ionic strengths. The soft materials can be injected in vivo, creating depots of drugs and cells for rendering pharmacological and biological actions. The scope of the applications of EAK is sought to extend to tissues through which the flow of extracellular fluid tends to be limited. In such anatomical locales the rate and extent of the fibrilization are limited insofar as drug delivery and cellular scaffolding would be impeded. A method is generated utilizing a carbodiimide cross-linker by which EAK fibrils are pre-assembled yet remain injectable soft materials. It is hypothesized that the resulting de novo covalent linkages enhance the stacking of the β-sheet bilayers, thereby increasing the lengths of the fibrils and the extent of their crosslinking, as evidenced in Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy, scanning electron microscopy, and atomic force microscopy analyses. The cross-linked EAK (clEAK) retains polymeric microspheres with an average diameter of 1 μm. Macrophages admixed with clEAK remain viable and do not produce the inflammatory mediator interleukin-1β. These results indicate that clEAK should be investigated further as a platform for delivering particles and cells in vivo. Attachment of a Low Molecular Weight Heparin to Titanium Dioxide for the Prevention of Fibrin Clotting Heart failure is the primary cause of death for millions of Americans per year. Those in the end stages of heart failure require a heart transplant but donor hearts are scarce and patient needs are doubling. The Left Ventricular Assist Device (LVAD) serves as a bridge-to-transplant (BTT) method to hold the patient over until a donor heart becomes available or to provide comfort in the final stages of the disease as a destination therapy (DT). These devices constantly pump blood throughout the body and contain a large motor chamber that is in constant contact with the blood flow. Exposure to the blood leads to pump thrombosis which is the formation of clots on the pump motor’s surface. These clots could prevent the motor from turning over, which would stall the blood supply to the body, or the internal rotor could dislodge a clot which may cause an ischemic stroke. Typically, LVADs need replaced every 10 years to deal with the effects of pump thrombosis. To lessen the chances of clotting, patients are put on daily anticoagulant regiments that systemically prevent thrombin formations. This now causes the patient to be a bleed risk vi for any additional operations they may need. A coating comprised of a thiol-terminated self-assembled monolayer (SAM) and an immobilized low-molecular weight heparin (LMWH) has been described in order to locally prevent clots from forming on the titanium dioxide (TiO2) surface of the LVAD motor while allowing clotting to continue elsewhere in the body. After reacting the anti-thrombin drug enoxaparin sodium (ES) with the thiol SAM, the attachment was confirmed using DRIFT IR and Contact Angle. The effectiveness of the drug was observed in experiments which flowed calcium-spiked plasma over the surface before analysis with SEM. Micrographs showed that the bare metal and SAM-coated surfaces had widespread clot formations, but the ES immobilized surface had only inactive clots dusting the surface. Fibroblast studies exhibited that the modifications to the surface were not cytotoxic and that any potential toxic effects were not the cause of the anti-clotting activity observed in the plasma trials. The characterization and plasma trial results show that this SAM immobilized anticoagulant coating should be investigated further in vivo. Optimization of a High Refractive Index, Hydrophobic Intraocular Lens Material Cataracts are a common issue of the aging population. Approximately half of Americans will experience cataracts by 2050 according to the National Institute of Health. When cataracts become severe enough to warrant a lens replacement intraocular lenses (IOLs) are used in place of the clouded lens. Various types of lenses are available including monofocal, multifocal, and toric. Common materials for the lenses are hydrophobic or hydrophilic acrylic monomers. Certain benefits and hinderances are found with these lenses. Hydrophobic lenses tend to have great bioahdesiveness post-surgery and low risk of posterior capsule opacification (PCO). However, glistenings that can scatter light and vii obstruct vision are prevalent due to the nature of the polymers used. Hydrophilic materials experience the opposite occurrences with no glistenings but high risk of PCO. The monomers that comprise the lenses also play a role in physical properties such as glass transition temperature (Tg), water content, and the focus of this work, refractive index (RI). The RI determines how thick or thin an IOL can be based on the passage of light. Herein we describe two new formulations optimized from a high RI hydrophobic material. Sterically bulky monomers of the original material were removed in favor of butyl acrylate (BA) and 2-hydroxyethyl methacrylate (HEMA) to reduce the RI from 1.56 to 1.50 to ease manufacturing. HEMA was added in an attempt to include a small amount of hydrophilicity to the product. Additional analysis with ATR-IR showed that the functional groups present in the original formulation are retained in the formulations with monomer substitutions. Surface topography was observed using SEM and demonstrated that the surface became smoother after the addition of BA and had less surface texture after the introduction of HEMA. Water uptake, content, thermogravimetric analysis, and differential scanning calorimetry were also collected to fully characterize the materials. These optimized formulations are optically clear, flexible, have the desired RI for machining, a low Tg, and a high water content that may lead to a reduction in glistenings

    Chapter 34 - Biocompatibility of nanocellulose: Emerging biomedical applications

    Get PDF
    Nanocellulose already proved to be a highly relevant material for biomedical applications, ensued by its outstanding mechanical properties and, more importantly, its biocompatibility. Nevertheless, despite their previous intensive research, a notable number of emerging applications are still being developed. Interestingly, this drive is not solely based on the nanocellulose features, but also heavily dependent on sustainability. The three core nanocelluloses encompass cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). All these different types of nanocellulose display highly interesting biomedical properties per se, after modification and when used in composite formulations. Novel applications that use nanocellulose includewell-known areas, namely, wound dressings, implants, indwelling medical devices, scaffolds, and novel printed scaffolds. Their cytotoxicity and biocompatibility using recent methodologies are thoroughly analyzed to reinforce their near future applicability. By analyzing the pristine core nanocellulose, none display cytotoxicity. However, CNF has the highest potential to fail long-term biocompatibility since it tends to trigger inflammation. On the other hand, neverdried BNC displays a remarkable biocompatibility. Despite this, all nanocelluloses clearly represent a flag bearer of future superior biomaterials, being elite materials in the urgent replacement of our petrochemical dependence
    corecore