782 research outputs found

    Active gate drivers for high-frequency application of SiC MOSFETs

    Get PDF
    The trend in the development of power converters is focused on efficient systems with high power density, reliability and low cost. The challenges to cover the new power converters requirements are mainly concentered on the use of new switching-device technologies such as silicon carbide MOSFETs (SiC). SiC MOSFETs have better characteristics than their silicon counterparts; they have low conduction resistance, can work at higher switching speeds and can operate at higher temperature and voltage levels. Despite the advantages of SiC transistors, operating at high switching frequencies, with these devices, reveal new challenges. The fast switching speeds of SiC MOSFETs can cause over-voltages and over-currents that lead to electromagnetic interference (EMI) problems. For this reason, gate drivers (GD) development is a fundamental stage in SiC MOSFETs circuitry design. The reduction of the problems at high switching frequencies, thus increasing their performance, will allow to take advantage of these devices and achieve more efficient and high power density systems. This Thesis consists of a study, design and development of active gate drivers (AGDs) aimed to improve the switching performance of SiC MOSFETs applied to high-frequency power converters. Every developed stage regarding the GDs is validated through tests and experimental studies. In addition, the developed GDs are applied to converters for wireless charging systems of electric vehicle batteries. The results show the effectiveness of the proposed GDs and their viability in power converters based on SiC MOSFET devices.La tendencia en el diseño y desarrollo de convertidores de potencia está enfocada en realizar sistemas eficientes con alta densidad de potencia, fiabilidad y bajo costo. Los retos para cubrir esta tendencia están centrados principalmente en el uso de nuevas tecnologías de dispositivos de conmutación tales como, MOSFETs de carburo de silicio (SiC). Los MOSFETs de SiC presentan mejores características que sus homólogos de silicio; tienen baja resistencia de conducción, pueden trabajar a mayores velocidades de conmutación y pueden operar a mayores niveles de temperatura y tensión. A pesar de las ventajas de los transistores de SiC, existen problemas que se manifiestan cuando estos dispositivos operan a altas frecuencias de conmutación. Las rápidas velocidades de conmutación de los MOSFETs de SiC pueden provocar sobre-voltajes y sobre-corrientes que conllevan a problemas de interferencia electromagnética (EMI). Por tal motivo, el desarrollo de controladores de puertas es una etapa fundamental en los MOSFETs de SiC para eliminar los problemas a altas frecuencias de conmutación y aumentar su rendimiento. En consecuencia, aprovechar las ventajas de estos dispositivos y lograr sistemas más eficientes y con alta densidad de potencia. En esta tesis, se realiza un estudio, diseño y desarrollo de controladores activos de puerta para mejorar el rendimiento de conmutación de los MOSFETs de SiC aplicados a convertidores de potencia de alta frecuencia. Los controladores son validados a través de pruebas y estudios experimentales. Además, los controladores de puerta desarrollados son aplicados en convertidores para sistemas de carga inalámbrica de baterías de vehículos eléctricos. Los resultados muestran la importancia de los controladores de compuerta propuestos y su viabilidad en convertidores de potencia basados en carburo de silicio

    A novel active gate driver for improving SiC MOSFET switching trajectory

    Get PDF
    The trend in power electronic applications is to reach higher power density and higher efficiency. Currently, the wide band-gap devices such as silicon carbide MOSFET (SiC MOSFET) are of great interest because they can work at higher switching frequency with low losses. The increase of the switching speed in power devices leads to high power density systems. However, this can generate problems such as overshoots, oscillations, additional losses, and electromagnetic interference (EMI). In this paper, a novel active gate driver (AGD) for improving the SiC MOSFET switching trajectory with high performance is presented. The AGD is an open-loop control system and its principle is based on gate energy decrease with a gate resistance increment during the Miller plateau effect on gate-source voltage. The proposed AGD has been designed and validated through experimental tests for high-frequency operation. Moreover, an EMI discussion and a performance analysis were realized for the AGD. The results show that the AGD can reduce the overshoots, oscillations, and losses without compromising the EMI. In addition, the AGD can control the turn-on and turn-off transitions separately, and it is suitable for working with asymmetrical supplies required by SiC MOSFETs.Postprint (author's final draft

    Contributions to the design of power modules for electric and hybrid vehicles: trends, design aspects and simulation techniques

    Get PDF
    314 p.En la última década, la protección del medio ambiente y el uso alternativo de energías renovables están tomando mayor relevancia tanto en el ámbito social y político, como científico. El sector del transporte es uno de los principales causantes de los gases de efecto invernadero y la polución existente, contribuyendo con hasta el 27 % de las emisiones a nivel global. En este contexto desfavorable, la electrificación de los vehículos de carretera se convierte en un factor crucial. Para ello, la transición de la actual flota de vehículos de carretera debe ser progresiva forzando la investigación y desarrollo de nuevos conceptos a la hora de producir vehículos eléctricos (EV) y vehículos eléctricos híbridos (HEV) más eficientes, fiables, seguros y de menor coste. En consecuencia, para el desarrollo y mejora de los convertidores de potencia de los HEV/EV, este trabajo abarca los siguientes aspectos tecnológicos: - Arquitecturas de la etapa de conversión de potencia. Las principales topologías que pueden ser implementadas en el tren de potencia para HEV/EV son descritas y analizadas, teniendo en cuenta las alternativas que mejor se adaptan a los requisitos técnicos que demandan este tipo de aplicaciones. De dicha exposición se identifican los elementos constituyentes fundamentales de los convertidores de potencia que forman parte del tren de tracción para automoción.- Nuevos dispositivos semiconductores de potencia. Los nuevos objetivos y retos tecnológicos solo pueden lograrse mediante el uso de nuevos materiales. Los semiconductores Wide bandgap (WBG), especialmente los dispositivos electrónicos de potencia basados en nitruro de galio (GaN) y carburo de silicio (SiC), son las alternativas más prometedoras al silicio (Si) debido a las mejores prestaciones que poseen dichos materiales, lo que permite mejorar la conductividad térmica, aumentar las frecuencias de conmutación y reducir las pérdidas.- Análisis de técnicas de rutado, conexionado y ensamblado de módulos de potencia. Los módulos de potencia fabricados con dies en lugar de dispositivos discretos son la opción preferida por los fabricantes para lograr las especificaciones indicadas por la industria de la automoción. Teniendo en cuenta los estrictos requisitos de eficiencia, fiabilidad y coste es necesario revisar y plantear nuevos layouts de las etapas de conversión de potencia, así como esquemas y técnicas de paralelización de los circuitos, centrándose en las tecnologías disponibles.Teniendo en cuenta dichos aspectos, la presente investigación evalúa las alternativas de semiconductores de potencia que pueden ser implementadas en aplicaciones HEV/EV, así como su conexionado para la obtención de las densidades de potencia requeridas, centrándose en la técnica de paralelización de semiconductores. Debido a la falta de información tanto científica como comercial e industrial sobre dicha técnica, una de las principales contribuciones del presente trabajo ha sido la propuesta y verificación de una serie de criterios de diseño para el diseño de módulos de potencia. Finalmente, los resultados que se han extraído de los circuitos de potencia propuestos demuestran la utilidad de dichos criterios de diseño, obteniendo circuitos con bajas impedancias parásitas y equilibrados eléctrica y térmicamente. A nivel industrial, el conocimiento expuesto en la presente tesis permite reducir los tiempos de diseño a la hora de obtener prototipos de ciertas garantías, permitiendo comenzar la fase de prototipado habiéndose realizado comprobaciones eléctricas y térmicas

    Series-Connection of Medium Voltage SIC Mosefets with Self-Powered Design

    Get PDF

    Analysis and optimization of the hardware design of a sic mosfet based power converter with sic schottky diodes utilizing a split output topology

    Get PDF
    In recent years, the use of power electronic devices for energy conversion with semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) are replacing silicon due to their high thermal conductivity, efficiency, resistance, and the possibility of smaller and thinner designs. For this reason, in order to evaluate the improvement potential of these systems, it is beneficial to realize experimental setups that emulate real operating conditions in order to verify the correct performance of these systems. In this context and based on the previous work done by Giorgio Ferrara, this thesis focuses on the analysis and identification of improvements of a SiC MOSFET-based power electronic converter with the aim of suggesting and studying different solutions that ensure a high-performance operation that allows its correct implementation in motor traction and grid-connected applications. During the thesis work, it is carried out an in-depth analysis of the voltage peaks between drain and source originated by the fast switching of the MOSFET to evaluate the use of Snubber capacitors and it is made a new hardware design of the gate driver board using isolated gate drivers to improve the dynamic behaviour in the switching transients of the SiC transistors and provide safety and robustness to the system. Finally, maintaining the original design of the converter, it implements the split output topology to evaluate possible solutions to the problems of electromagnetic interference (EMI) and the crosstalk effect that occurs with high frequency switchingNegli ultimi anni, l'uso di dispositivi elettronici di potenza per la conversione dell'energia con semiconduttori come il carburo di silicio (SiC) o il nitruro di gallio (GaN) sta sostituendo il silicio grazie alla sua elevata conducibilità termica, all'efficienza, alla resistenza e alla possibilità di realizzare disegni più piccoli e sottili. Per questo motivo, al fine di valutare il potenziale di miglioramento di questi sistemi, è utile realizzare set-up sperimentali che emulino le condizioni operative reali, in modo da poter eseguire diversi test per verificare il corretto comportamento di questi sistemi. In tale contesto e a partire dal precedente lavoro effettuato per Giorgio Ferrara, la presente tesi si concentra nell' analisi e nidentificazione di miglioramenti di un convertitore di potenza DC-AC a commutazione, al fine di proporre e studiare diverse soluzioni che garantiscano le elevate prestazioni che assicurano la sua corretta implementazione in applicazioni di trazione a motore e di connessione alla rete. Durante il lavoro di tesi, si analizza in dettaglio il fenomeno di picchi di tensione tra drain e source causato per la commutazione veloce del MOSFET e si valuta l'utilizzo di condensatori snubber; in più si realizza un nuovo disegno hardware della board di gate driver utilizzando gate driver isolati per migliorare il comportamento dinamico nei transitori di commutazione dei transistor SiC e per fornire sicurezza e robustezza al sistema. Per finire, mantenendo il disegno originale del convertitore, implementa la topologia di uscita Split Output per valutare possibili soluzioni ai problemi di interferenza elettromagnetica (EMI) e all'effetto diafonia che si produce con la commutazione ad alta frequenzaObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.5 - Augmentar la investigació científica i millorar la capacitat tecnològica dels sectors industrials de tots els països, en particular els països en desenvolupament, entre d’altres maneres fomentant la innovació i augmentant substancialment, d’aquí al 2030, el nombre de persones que treballen en el camp de la investigació i el desenvolupa­ment per cada milió d’habitants, així com la despesa en investigació i desenvolupament dels sectors públic i priva

    Analysis and optimization of the hardware design of a sic mosfet based power converter with sic schottky diodes utilizing a split output topology

    Get PDF
    In recent years, the use of power electronic devices for energy conversion with semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) are replacing silicon due to their high thermal conductivity, efficiency, resistance, and the possibility of smaller and thinner designs. For this reason, in order to evaluate the improvement potential of these systems, it is beneficial to realize experimental setups that emulate real operating conditions in order to verify the correct performance of these systems. In this context and based on the previous work done by Giorgio Ferrara, this thesis focuses on the analysis and identification of improvements of a SiC MOSFET-based power electronic converter with the aim of suggesting and studying different solutions that ensure a high-performance operation that allows its correct implementation in motor traction and grid-connected applications. During the thesis work, it is carried out an in-depth analysis of the voltage peaks between drain and source originated by the fast switching of the MOSFET to evaluate the use of Snubber capacitors and it is made a new hardware design of the gate driver board using isolated gate drivers to improve the dynamic behaviour in the switching transients of the SiC transistors and provide safety and robustness to the system. Finally, maintaining the original design of the converter, it implements the split output topology to evaluate possible solutions to the problems of electromagnetic interference (EMI) and the crosstalk effect that occurs with high frequency switchingNegli ultimi anni, l'uso di dispositivi elettronici di potenza per la conversione dell'energia con semiconduttori come il carburo di silicio (SiC) o il nitruro di gallio (GaN) sta sostituendo il silicio grazie alla sua elevata conducibilità termica, all'efficienza, alla resistenza e alla possibilità di realizzare disegni più piccoli e sottili. Per questo motivo, al fine di valutare il potenziale di miglioramento di questi sistemi, è utile realizzare set-up sperimentali che emulino le condizioni operative reali, in modo da poter eseguire diversi test per verificare il corretto comportamento di questi sistemi. In tale contesto e a partire dal precedente lavoro effettuato per Giorgio Ferrara, la presente tesi si concentra nell' analisi e nidentificazione di miglioramenti di un convertitore di potenza DC-AC a commutazione, al fine di proporre e studiare diverse soluzioni che garantiscano le elevate prestazioni che assicurano la sua corretta implementazione in applicazioni di trazione a motore e di connessione alla rete. Durante il lavoro di tesi, si analizza in dettaglio il fenomeno di picchi di tensione tra drain e source causato per la commutazione veloce del MOSFET e si valuta l'utilizzo di condensatori snubber; in più si realizza un nuovo disegno hardware della board di gate driver utilizzando gate driver isolati per migliorare il comportamento dinamico nei transitori di commutazione dei transistor SiC e per fornire sicurezza e robustezza al sistema. Per finire, mantenendo il disegno originale del convertitore, implementa la topologia di uscita Split Output per valutare possibili soluzioni ai problemi di interferenza elettromagnetica (EMI) e all'effetto diafonia che si produce con la commutazione ad alta frequenzaObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.5 - Augmentar la investigació científica i millorar la capacitat tecnològica dels sectors industrials de tots els països, en particular els països en desenvolupament, entre d’altres maneres fomentant la innovació i augmentant substancialment, d’aquí al 2030, el nombre de persones que treballen en el camp de la investigació i el desenvolupa­ment per cada milió d’habitants, així com la despesa en investigació i desenvolupament dels sectors públic i priva

    Packaging of Wide Bandgap Power Semiconductors using Simulation-based Design

    Get PDF

    Methodology to Improve Switching Speed of SiC MOSFETs in Hard Switching Applications

    Get PDF
    To meet the higher efficiency and power density requirement for power converters, the switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes it possible to run converters at faster switching speed in hard switching applications. Nevertheless, the switching speed is not only dependent on the device’s characteristics, but also strongly related to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the impact factors limiting the switching speed are required to be understood. Specific solutions and methods need to be developed to mitigate the influence from these impact factors.The characterization of the switching speed for SiC MOSFETs with different current ratings is conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching speed are evaluated in detail.According to the evaluation, the switching speed of SiC discrete devices with low current rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge pump gate drive are proposed, which can provide higher current during the switching transient regardless of the low transconductance and large internal gate resistance of SiC discrete devices.For SiC power modules with high current rating, the switching speed is mainly determined by the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple modulation is developed to mitigate the effect of the non-linear device output capacitance, which helps reduce the overvoltage and enables higher switching speed operation of SiC power modules.Furthermore, the layout design methodology for three-level converters concerning the multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 3L-ANPC converter with SiC power modules is presented in detail.Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. The proposed control and busbar above are utilized to increase the switching speed of the SiC power module
    corecore