2,092 research outputs found

    On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Get PDF
    Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM) or simplified adaptive volume scattering model, (SAVSM) proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR) data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there exists a trade-off between parameter accuracy and model complexity which constrains the physical validity of solutions and must be further investigated.This work was supported in part by National Nature Science Foundation of China under Grant 41531068, 41371335, 41671356 and 41274010, the Spanish Ministry of Economy and Competitiveness and EU FEDER under Project TIN2014-55413-C2-2-P, and China Scholarship Council under Grant 201406370079

    Application Of Polarimetric SAR For Surface Parameter Inversion And Land Cover Mapping Over Agricultural Areas

    Get PDF
    In this thesis, novel methodology is developed to extract surface parameters under vegetation cover and to map crop types, from the polarimetric Synthetic Aperture Radar (PolSAR) images over agricultural areas. The extracted surface parameters provide crucial information for monitoring crop growth, nutrient release efficiency, water capacity, and crop production. To estimate surface parameters, it is essential to remove the volume scattering caused by the crop canopy, which makes developing an efficient volume scattering model very critical. In this thesis, a simplified adaptive volume scattering model (SAVSM) is developed to describe the vegetation scattering as crop changes over time through considering the probability density function of the crop orientation. The SAVSM achieved the best performance in fields of wheat, soybean and corn at various growth stages being in convert with the crop phenological development compared with current models that are mostly suitable for forest canopy. To remove the volume scattering component, in this thesis, an adaptive two-component model-based decomposition (ATCD) was developed, in which the surface scattering is a X-Bragg scattering, whereas the volume scattering is the SAVSM. The volumetric soil moisture derived from the ATCD is more consistent with the verifiable ground conditions compared with other model-based decomposition methods with its RMSE improved significantly decreasing from 19 [vol.%] to 7 [vol.%]. However, the estimation by the ATCD is biased when the measured soil moisture is greater than 30 [vol.%]. To overcome this issue, in this thesis, an integrated surface parameter inversion scheme (ISPIS) is proposed, in which a calibrated Integral Equation Model together with the SAVSM is employed. The derived soil moisture and surface roughness are more consistent with verifiable observations with the overall RMSE of 6.12 [vol.%] and 0.48, respectively

    DVB-S based passive polarimetric ISAR – methods and experimental validation

    Get PDF
    In this work, we focus on passive polarimetric ISAR for ship target imaging using DVB-S signals of opportunity. A first goal of the research is to investigate if, within the challenging passive environment, different scattering mechanisms, belonging to distinct parts of the imaged target, can be separated in the polarimetric domain. Furthermore, a second goal is at verifying if polarimetric diversity could enable the formation of ISAR products with enhanced quality with respect to the single channel case, particularly in terms of better reconstruction of the target shape. To this purpose, a dedicated trial has been conducted along the river Rhine in Germany by means of an experimental DVB-S based system developed at Fraunhofer FHR and considering a ferry as cooperative target. To avoid inaccuracies due to data-driven motion compensation procedures and to fairly interpret the polarimetric results, we processed the data by means of a known-motion back-projection algorithm obtaining ISAR images at each polarimetric channel. Then, different approaches in the polarimetric domain have been introduced. The first one is based on the well-known Pauli Decomposition. The others can be divided in two main groups: (i) techniques aimed at separating the different backscattering mechanisms, and (ii) image domain techniques to fuse the polarimetric information in a single ISAR image with enhanced quality. The different considered techniques have been applied to several data sets with distinct bistatic geometries. The obtained results clearly demonstrate the potentialities of polarimetric diversity that could be fruitfully exploited for classification purposes

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    • …
    corecore