46 research outputs found

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking

    Guiding our interpretation of quantum theory by principles of causation and inference

    Get PDF
    A key aim of quantum foundations is to characterize the sense in which nature goes beyond classical physics. Understanding nonclassicality is one of our best avenues towards finding a satisfactory interpretation of quantum theory. By determining which classical principles cannot be satisfied in any empirically adequate physical theory, we begin to see which principles can be preserved, which in turn gives us insight into the ontology of the world. These insights then guide us in determining which questions to ask and which experiments to perform next. Furthermore, it is these nonclassical aspects of nature that give rise to new technologies such as the speed-ups of quantum computation or the security of quantum key distribution. The gold standard for establishing that a phenomenon is truly nonclassical is to prove that it violates the principle of local causality or the principle of noncontextuality. Much of this thesis reports on my research relating to these two principles. This research primarily involves (i) finding new justifications for our notions of nonclassicality; (ii) refining their fundamental definitions; (iii) quantifying and characterizing their various manifestations; and (iv) finding applications where nonclassical phenomena act as resources for information processing. Ultimately, all of this work on nonclassicality is woven together into a novel framework for physical theories introduced by myself, John Selby, and Rob Spekkens. Its main advantage over preexisting frameworks is that it maintains a clear distinction between which elements of a given physical theory directly describe causal processes, and which refer only to one’s inferences about causal processes. This clarifies a number of confusions in the literature which arose precisely because previous frameworks scrambled causal and inferential concepts. Furthermore, local causality and noncontextuality emerge in this framework as the assumptions that the causal and inferential structures (respectively) that are operationally observed must be respected in the underlying ontology. This work constitutes a first step in developing a new interpretation of quantum theory—the first interpretation designed to satisfy the spirit of both local causality and noncontextuality

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing
    corecore