692 research outputs found

    Analysis and design of a high power, digitally-controlled spacecraft power system

    Get PDF
    The progress to date on the analysis and design of a high power, digitally controlled spacecraft power system is described. Several battery discharger topologies were compared for use in the space platform application. Updated information has been provided on the battery voltage specification. Initially it was thought to be in the 30 to 40 V range. It is now specified to be 53 V to 84 V. This eliminated the tapped-boost and the current-fed auto-transformer converters from consideration. After consultations with NASA, it was decided to trade-off the following topologies: (1) boost converter; (2) multi-module, multi-phase boost converter; and (3) voltage-fed push-pull with auto-transformer. A non-linear design optimization software tool was employed to facilitate an objective comparison. Non-linear design optimization insures that the best design of each topology is compared. The results indicate that a four-module, boost converter with each module operating 90 degrees out of phase is the optimum converter for the space platform. Large-signal and small-signal models were generated for the shunt, charger, discharger, battery, and the mode controller. The models were first tested individually according to the space platform power system specifications supplied by NASA. The effect of battery voltage imbalance on parallel dischargers was investigated with respect to dc and small-signal responses. Similarly, the effects of paralleling dischargers and chargers were also investigated. A solar array and shunt model was included in these simulations. A model for the bus mode controller (power control unit) was also developed to interface the Orbital replacement Unit (ORU) model to the platform power system. Small signal models were used to generate the bus impedance plots in the various operating modes. The large signal models were integrated into a system model, and time domain simulations were performed to verify bus regulation during mode transitions. Some changes have subsequently been incorporated into the models. The changes include the use of a four module boost discharger, and a new model for the mode controller, which includes the effects of saturation. The new simulations for the boost discharger show the improvement in bus ripple that can be achieved by phase-shifted operation of each of the boost modules

    Pseudo-Derivative-Feedback Current Control for Three-Phase Grid-Connected Inverters With LCL Filters

    Get PDF

    Control System Design, Analysis, and Simulation of a Photovoltaic Inverter for Unbalanced Load Compensation in a Microgrid

    Get PDF
    This thesis presents a control scheme for a single-stage three-phase Photovoltaic (PV) converter with negative sequence load current compensation. In this thesis a dual virtual impedance active damping technique for an LCL filter is proposed to address the issue of LCL filter resonance. Both inverter-side current and the capacitor current are used in the feedback loop. Using both signals provides higher DC rejection than using capacitor current alone. The proposed active damping scheme results in a faster transient response and higher damping ratio than can be obtained using inverter-side current alone. The feedback gains can be calculated to achieve a specified damping level. A method of determining the gains of the Proportional and Resonant current controller based on frequency response characteristics is presented. For a specified set of gain and phase margins, the controller gains can be calculated explicitly. Furthermore, a modification is proposed to prevent windup in the resonator. A numerically compensated Half-Cycle Discrete Fourier Transform (HCDFT) method is developed to calculate the negative sequence component of the load current. The numerical compensation allows the HCDFT to accurately estimate the fundamental component of the load current under off-nominal frequency conditions. The proposed HCDFT method is shown to have a quick settling time that is comparable to that obtained with conventional sequence compensation techniques as well as immunity to harmonics in the input signal. The effect of unbalance compensation on the PV power output depending on the irradiance and the operational region on the power-voltage curve is examined. Analysis of the DC link voltage ripple shows the region of operation on the P-V curve affects the amplitude of the DC link voltage ripple during negative sequence compensation. The proposed control scheme is validated by simulation in the Matlab/Simulink® environment. The proposed control scheme is tested in the presence of excessive current imbalance, unbalanced feeder impedances, and non-linear loads. The results have shown that the proposed control scheme can improve power quality in a hybrid PV-diesel microgrid by reducing both voltage and current imbalance while simultaneously converting real power from a PV array

    Onduleur quasi-Z-source pour un système de traction de véhicules électriques à sources multiples : contrôle et gestion

    Get PDF
    Abstract: Power electronics play a fundamental role and help to achieve the new goals of the automobiles in terms of energy economy and environment. The power electronic converters are the key elements which interface their power sources to the drivetrain of the electric vehicle (EV). They contribute to obtaining high efficiency and performance in power systems. However, traditional inverters such as voltage-source, current-source inverters and conventional two-stage inverters present some conceptual limitations. Consequently, many research efforts have been focused on developing new power electronic converters suitable for EVs application. In order to develop and enhance the performance of commercial multiple sources EV, this dissertation aims to select and to control the impedance source inverter and to provide management approaches for multiple sources EV traction system. A concise review of the main existing topologies of impedance source inverters has been presented. That enables to select QZSI (quasi-Z-source inverter) topology as promising architectures with better performance and reliability. The comparative study between the bidirectional conventional two-stage inverter and QZSI for EV applications has been presented. Furthermore, comparative study between different powertrain topologies regarding batteries aging index factors for an off-road EV has been explored. These studies permit to prove that QZSI topology represents a good candidate to be used in multi-source EV system. For improving the performance of QZSI applied to EVs, optimized fractional order PI (FOPI) controllers for QZSI is designed with the ant colony optimization algorithm (ACO-NM) to obtain more suitable aging performance index values for the battery. Moreover, this thesis proposes a hybrid energy storage system (HESS) for EVs to allow an efficient energy use of the battery for a longer distance coverage. Optimized FOPI controller and the finite control set model predictive controller (FCS-MPC) for HESS using bidirectional QZSI is applied for the multi-source EV. The flux-weakening controller has been designed to provide a correct operation with the maximum available torque at any speed within current and voltage limits. Simulation investigations are performed to verify the topologies studied and the efficacity of the proposed controller structure with the bidirectional QZSI. Furthermore, Opal-RT-based real-time simulation has been implemented to validate the effectiveness of the proposed HESS control strategy. The results confirm the EV performance enhancement with the addition of supercapacitors using the proposed control configuration, allowing the efficient use of battery energy with the reduction of root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of battery current compared to the battery-only based inverter.L'électronique de puissance joue un rôle fondamental et contribue à atteindre les nouveaux objectifs de l'automobile en termes d'économie d'énergie et d'environnement. Les convertisseurs d’électroniques de puissance sont considérés comme les éléments clés qui interfacent leurs sources d'alimentation avec la chaîne de traction du véhicule électrique (VE). Ils contribuent à obtenir une efficacité et des performances élevées dans les systèmes électriques. Cependant, les onduleurs traditionnels tels que les onduleurs à source de tension, les onduleurs à source de courant et les onduleurs conventionnels à deux étages qui constituent les onduleurs les plus couramment utilisés, présentent certaines limitations conceptuelles. Par conséquent, de nombreux efforts de recherche se sont concentrés sur le développement de nouveaux convertisseurs d’électroniques de puissance adaptés à l'application aux véhicules électriques. Afin de développer et d'améliorer les performances des VEs à sources multiples commerciales, cette thèse vise à sélectionner, contrôler l'onduleur à source impédante et fournit une approche de gestion pour l'application du système de traction du VE à sources multiples. Une revue concise des principales topologies existantes d'onduleur à source impédante a été présentée. Cela a permis de sélectionner la topologie de l’onduleur quasi-Z-source (QZS) comme architectures prometteuses pouvant être utilisées dans les véhicules électriques, avec de meilleures performances et de fiabilité. L'étude comparative entre l'onduleur bidirectionnel conventionnel à deux étages et de celui à QZS pour les applications du VE a été présentée. En outre, une étude comparative entre différentes topologies de groupes motopropulseurs concernant les facteurs d'indice de vieillissement des batteries pour une application du VE hors route a été explorée. Ces études ont permis de prouver que la topologie de l’onduleur QZS représente une bonne topologie candidate à utiliser dans un système de VE à sources multiples. Pour améliorer les performances de l’onduleur QZS appliquées aux véhicules électriques, des contrôleurs PI d'ordre fractionnaire (PIOF) optimisés pour l’onduleur QZS sont conçus avec l'algorithme de colonies de fourmis afin d'obtenir des valeurs d'indice de performance de vieillissement plus appropriées pour la batterie. De plus, cette thèse propose un système de stockage d'énergie hybride (SSEH) pour le VE afin de permettre une utilisation efficace de l'énergie de la batterie pour une couverture de distance plus longue et une extension de son autonomie. L’optimisation du contrôleur PIOF et du contrôleur par modèle prédictif d'ensemble de contrôle fini (CMP-ECF) pour l’onduleur QZS bidirectionnel a été appliqué au VE à sources multiples avec des approches de gestion appuyées par des règles. Le contrôleur d'affaiblissement de flux magnétique du moteur a été conçu pour fournir un fonctionnement correct avec le couple maximal disponible à n'importe quelle vitesse dans les limites de courant et de tension. Des investigations et des simulations sont effectuées pour vérifier les différentes topologies étudiées et l'efficacité de la structure de contrôleur proposée avec l’onduleur QZS bidirectionnel. De plus, une simulation en temps réel basée sur Opal-RT a été mise en œuvre pour valider l'efficacité de la stratégie de contrôle SSEH proposée. Les résultats confirment l'amélioration des performances du VE avec l'ajout d'un supercondensateur utilisant la configuration du contrôle proposée, permettant une utilisation efficace de l'énergie de la batterie avec une réduction de la valeur moyenne quadratique, de la valeur moyenne et de l'écart type de 57%, 59% et 27%, respectivement, du courant de la batterie par rapport à l'onduleur connecté directement à la batterie

    A digital controller for a unity power factor converter

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1993.Includes bibliographical references (leaves 153-154).by Ahmed Mitwalli.M.S
    • …
    corecore