611 research outputs found

    The Modeling and Advanced Controller Design of Wind, PV and Battery Inverters

    Get PDF
    Renewable energies such as wind power and solar energy have become alternatives to fossil energy due to the improved energy security and sustainability. This trend leads to the rapid growth of wind and Photovoltaic (PV) farm installations worldwide. Power electronic equipments are commonly employed to interface the renewable energy generation with the grid. The intermittent nature of renewable and the large scale utilization of power electronic devices bring forth numerous challenges to system operation and design. Methods for studying and improving the operation of the interconnection of renewable energy such as wind and PV are proposed in this Ph.D. dissertation.;A multi-objective controller including is proposed for PV inverter to perform voltage flicker suppression, harmonic reduction and unbalance compensation. A novel supervisory control scheme is designed to coordinate PV and battery inverters to provide high quality power to the grid. This proposed control scheme provides a comprehensive solution to both active and reactive power issues caused by the intermittency of PV energy. A novel real-time experimental method for connecting physical PV panel and battery storage is proposed, and the proposed coordinated controller is tested in a Hardware in the Loop (HIL) experimental platform based on Real Time Digital Simulator (RTDS).;This work also explores the operation and controller design of a microgrid consisting of a direct drive wind generator and a battery storage system. A Model Predictive Control (MPC) strategy for the AC-DC-AC converter of wind system is derived and implemented to capture the maximum wind energy as well as provide desired reactive power. The MPC increases the accuracy of maximum wind energy capture as well as minimizes the power oscillations caused by varying wind speed. An advanced supervisory controller is presented and employed to ensure the power balance while regulating the PCC bus voltage within acceptable range in both grid-connected and islanded operation.;The high variability and uncertainty of renewable energies introduces unexpected fast power variation and hence the operation conditions continuously change in distribution networks. A three-layers advanced optimization and intelligent control algorithm for a microgrid with multiple renewable resources is proposed. A Dual Heuristic Programming (DHP) based system control layer is used to ensure the dynamic reliability and voltage stability of the entire microgrid as the system operation condition changes. A local layer maximizes the capability of the Photovoltaic (PV), wind power generators and battery systems, and a Model Predictive Control (MPC) based device layer increases the tracking accuracy of the converter control. The detail design of the proposed SWAPSC scheme are presented and tested on an IEEE 13 node feeder with a PV farm, a wind farm and two battery-based energy storage systems

    Flexible structure control laboratory development and technology demonstration

    Get PDF
    An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    The design of a turboshaft speed governor using modern control techniques

    Get PDF
    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient

    Performance Analysis of Photovoltaic Fed Distributed Static Compensator for Power Quality Improvement

    Get PDF
    Owing to rising demand for electricity, shortage of fossil fuels, reliability issues, high transmission and distribution losses, presently many countries are looking forward to integrate the renewable energy sources into existing electricity grid. This kind of distributed generation provides power at a location close to the residential or commercial consumers with low transmission and distribution costs. Among other micro sources, solar photovoltaic (PV) systems are penetrating rapidly due to its ability to provide necessary dc voltage and decreasing capital cost. On the other hand, the distribution systems are confronting serious power quality issues because of various nonlinear loads and impromptu expansion. The power quality issues incorporate harmonic currents, high reactive power burden, and load unbalance and so on. The custom power device widely used to improve these power quality issues is the distributed static compensator (DSTATCOM). For continuous and effective compensation of power quality issues in a grid connected solar photovoltaic distribution system, the solar inverters are designed to operate as a DSTATCOM thus by increasing the efficiency and reducing the cost of the system. The solar inverters are interfaced with grid through an L-type or LCL-type ac passive filters. Due to the voltage drop across these passive filters a high amount of voltage is maintained across the dc-link of the solar inverter so that the power can flow from PV source to grid and an effective compensation can be achieved. So in the thesis a new topology has been proposed for PV-DSTATCOM to reduce the dc-link voltage which inherently reduces the cost and rating of the solar inverter. The new LCLC-type PV-DSTATCOM is implemented both in simulation and hardware for extensive study. From the obtained results, the LCLC-type PV-DSTATCOM found to be more effective than L-type and LCL-type PV-DSTATCOM. Selection of proper reference compensation current extraction scheme plays the most crucial role in DSTATCOM performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and IcosΦ schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, IcosΦ scheme is the best PV-DSTATCOM control scheme irrespective of supply and load conditions. In the view of the fact that the filtering parameters of the PV-DSTATCOM and gains of the PI controller are designed using a linearized mathematical model of the system. Such a design may not yield satisfactory results under changing operating conditions due to the complex, nonlinear and time-varying nature of power system networks. To overcome this, evolutionary algorithms have been adopted and an algorithm-specific control parameter independent optimization tool (JAYA) is proposed. The JAYA optimization algorithm overcomes the drawbacks of both grenade explosion method (GEM) and teaching learning based optimization (TLBO), and accelerate the convergence of optimization problem. Extensive simulation studies and real-time investigations are performed for comparative assessment of proposed implementation of GEM, TLBO and JAYA optimization on PV-DSTATCOM. This validates that, the PV-DSTATCOM employing JAYA offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values. Another indispensable aspect of PV-DSTATCOM is that due to parameter variation and nonlinearity present in the system, the reference current generated by the reference compensation current extraction scheme get altered for a changing operating conditions. So a sliding mode controller (SMC) based p-q theory is proposed in the dissertation to reduce these effects. To validate the efficacy of the implemented sliding mode controller for the power quality improvement, the performance of the proposed system with both linear and non-linear controller are observed and compared by taking total harmonic distortion as performance index. From the obtained simulation and experimentation results it is concluded that the SMC based LCLC-type PV-DSTATCOM performs better in all critical operating conditions

    Study and RTDS implementation of some controllers for performance and power quality improvement of an induction motor drive system

    Get PDF
    The present research work is directed to study of some controllers for design, modelling, simulation and RTDS implementation of induction motor (IM) drive system to identify suitable controller for high performance.Initially dynamic modelling and simulation of a feedback linearization scheme for high performance IM drive is carried out. The flux measurement required in this scheme is achieved using flux estimator rather sensor to simplify the system. The complexity and calculation involved in reference frame transformation is taken care by implementing the scheme in stationary reference frame. Two linear and independent subsystems: (i) Electrical and (ii) Mechanical are created by linearizing control scheme. The systematic design of closed loop control scheme using Proportional Integral (PI) controller is developed for implementation. To take care of uncertainties in the system the Fuzzy controller is added to speed controller. Sliding Mode (SM) controller considered to be a robust control strategy is designed and developed for IM drive. A procedure of finding gain and bandwidth of the controller is developed to take care of model inaccuracies, load disturbances and rotor resistance variation. During practical implementation of this controller for IM leads to oscillations and of state variable chattering due to presence of limiter and PWM inverter in the system. Iterative Learning controller (ILC) introduced in recent time is gaining popularity due to capability to take care of short comings of Sliding Mode controller. Feedback and feed forward Iterative Learning controller combining fuzzy logic is designed and developed. The MATLAB/SIMULINK model of IM drive with controllers designed are simulated under various possible operating conditions. A comparative study of three controllers is carried out in similar situation and the response of the drive system is presented.Normally we neglect stability aspect of IM while investigating procedure for performance improvement of IM drive. Stability study of IM in open loop and closed vii loop conditions using Lyapunov criteria and also considering the power balance equation are presented

    Application of Fuzzy Logic for Performance Enhancement of Drives

    Get PDF
    Fuzzy logic shows enormous potential for advancing power electronics technology. Its application to DC and AC drives control is discussed here. Initially, a phase-controlled bridge converter DC drive was considered. Analysis of converter performance at continuous and discontinuous conduction modes was first conducted. Fuzzy control was used to linearize the transfer characteristics of the converter in discontinuous conduction mode. It was then extended to current and speed loops, replacing the conventional proportional-integral controllers. The control algorithms were developed in detail, and verified by PC-SIMNON (developed by Lund Institute of Technology Sweden) digital simulation. Significant performance improvement was achieved over conventional control methods. Efficiency optimization of an indirect vector controlled induction motor drive was next considered. An accurate loss model of the converter induction machine system was first developed. Steady-state fundamental and harmonics loss characteristics, besides the dynamic of the machine were analyzed and incorporated in the model, resulting in a new synchronous frame dynamic De-Qe equivalent circuit. The converter system has been modeled accurately for conduction and switching losses. The lossy models were then used in the validation of the fuzzy logic based on-line efficiency optimization control. At steady-state, the fuzzy controller adaptively changes the excitation current on the basis of measured input power, until the maximum efficiency point is reached. The pulsating torque, due to flux reduction, has been compensated by an ingenious feedforward scheme. During transients, rated flux is established, to get the best transient response. After a comprehensive simulation study, an experimental 5 hp drive system was tested, with the proposed controller implemented on a Texas Instrument TMS320C25 digital signal processor, and the theoretical development was fully validated. Finally, fuzzy logic was applied in combination with model-reference adaptive control (MRAC) technique to slip gain tuning of an indirect vector controlled induction motor drive. The MRAC methods based on reactive power and D-axis voltage were combined through a weighting factor, generated by a fuzzy controller, that ensures the use of the best method for any point in the torque-speed plane. A second fuzzy controller tunes the slip gain based on combined detuning error and its slope. The drive performance was extensively investigated through simulations and experiments. The results confirmed the validity of the proposed method

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards
    corecore