1,540 research outputs found

    Probabilistic generative modeling of speech

    Get PDF
    Speech processing refers to a set of tasks that involve speech analysis and synthesis. Most speech processing algorithms model a subset of speech parameters of interest and blur the rest using signal processing techniques and feature extraction. However, evidence shows that many speech parameters can be more accurately estimated if they are modeled jointly; speech synthesis also benefits from joint modeling. This thesis proposes a probabilistic generative model for speech called the Probabilistic Acoustic Tube (PAT). The highlights of the model are threefold. First, it is among the very first works to build a complete probabilistic model for speech. Second, it has a well-designed model for the phase spectrum of speech, which has been hard to model and often neglected. Third, it models the AM-FM effects in speech, which are perceptually significant but often ignored in frame-based speech processing algorithms. Experiment shows that the proposed model has good potential for a number of speech processing tasks

    Histogram of gradients of Time-Frequency Representations for Audio scene detection

    Full text link
    This paper addresses the problem of audio scenes classification and contributes to the state of the art by proposing a novel feature. We build this feature by considering histogram of gradients (HOG) of time-frequency representation of an audio scene. Contrarily to classical audio features like MFCC, we make the hypothesis that histogram of gradients are able to encode some relevant informations in a time-frequency {representation:} namely, the local direction of variation (in time and frequency) of the signal spectral power. In addition, in order to gain more invariance and robustness, histogram of gradients are locally pooled. We have evaluated the relevance of {the novel feature} by comparing its performances with state-of-the-art competitors, on several datasets, including a novel one that we provide, as part of our contribution. This dataset, that we make publicly available, involves 1919 classes and contains about 900900 minutes of audio scene recording. We thus believe that it may be the next standard dataset for evaluating audio scene classification algorithms. Our comparison results clearly show that our HOG-based features outperform its competitor

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Text-Independent Speaker Identification Using the Histogram Transform Model

    Get PDF

    Optimizing Stimulation Strategies in Cochlear Implants for Music Listening

    Get PDF
    Most cochlear implant (CI) strategies are optimized for speech characteristics while music enjoyment is signicantly below normal hearing performance. In this thesis, electrical stimulation strategies in CIs are analyzed for music input. A simulation chain consisting of two parallel paths, simulating normal hearing conditions and electrical hearing respectively, is utilized. One thesis objective is to congure and develop the sound processor of the CI chain to analyze dierent compression- and channel selection strategies to optimally capture the characteristics of music signals. A new set of knee points (KPs) for the compression function are investigated together with clustering of frequency bands. The N-of-M electrode selection strategy models the eect of a psychoacoustic masking threshold. In order to evaluate the performance of the CI model, the normal hearing model is considered a true reference. Similarity among the resulting neurograms of respective model are measured using the image analysis method Neurogram Similarity Index Measure (NSIM). The validation and resolution of NSIM is another objective of the thesis. Results indicate that NSIM is sensitive to no-activity regions in the neurograms and has diculties capturing small CI changes, i.e. compression settings. Further verication of the model setup is suggested together with investigating an alternative optimal electric hearing reference and/or objective similarity measure
    • …
    corecore