1,628 research outputs found

    Efficient range alignment algorithm for real-time range-Doppler algorithm

    Get PDF
    When deriving a range-Doppler image or a time-frequency image of a fast-maneuvering target at long range, existing range alignment methods yield poor results due to the large numbers of range profiles (RPs) and range bins that are required for this task. This paper proposes a three-step range alignment method to overcome the problems of these existing methods and to yield focused images: (1) coarse alignment using the interpolated center of mass of each RP, (2) fine alignment with an integer step using an entropy cost function, and (3) fine-tuning using particle swarm optimization. Compared to existing methods, the proposed method is computationally more efficient and provides better image focus. © 2017, Electromagnetics Academy. All rights reserved.11Yscopu

    Moving Target Analysis in ISAR Image Sequences with a Multiframe Marked Point Process Model

    Get PDF
    In this paper we propose a Multiframe Marked Point Process model of line segments and point groups for automatic target structure extraction and tracking in Inverse Synthetic Aperture Radar (ISAR) image sequences. For the purpose of dealing with scatterer scintillations and high speckle noise in the ISAR frames, we obtain the resulting target sequence by an iterative optimization process, which simultaneously considers the observed image data and various prior geometric interaction constraints between the target appearances in the consecutive frames. A detailed quantitative evaluation is performed on 8 real ISAR image sequences of different carrier ship and airplane targets, using a test database containing 545 manually annotated frames

    Cross-species network and transcript transfer

    Get PDF
    Metabolic processes, signal transduction, gene regulation, as well as gene and protein expression are largely controlled by biological networks. High-throughput experiments allow the measurement of a wide range of cellular states and interactions. However, networks are often not known in detail for specific biological systems and conditions. Gene and protein annotations are often transferred from model organisms to the species of interest. Therefore, the question arises whether biological networks can be transferred between species or whether they are specific for individual contexts. In this thesis, the following aspects are investigated: (i) the conservation and (ii) the cross-species transfer of eukaryotic protein-interaction and gene regulatory (transcription factor- target) networks, as well as (iii) the conservation of alternatively spliced variants. In the simplest case, interactions can be transferred between species, based solely on the sequence similarity of the orthologous genes. However, such a transfer often results either in the transfer of only a few interactions (medium/high sequence similarity threshold) or in the transfer of many speculative interactions (low sequence similarity threshold). Thus, advanced network transfer approaches also consider the annotations of orthologous genes involved in the interaction transfer, as well as features derived from the network structure, in order to enable a reliable interaction transfer, even between phylogenetically very distant species. In this work, such an approach for the transfer of protein interactions is presented (COIN). COIN uses a sophisticated machine-learning model in order to label transferred interactions as either correctly transferred (conserved) or as incorrectly transferred (not conserved). The comparison and the cross-species transfer of regulatory networks is more difficult than the transfer of protein interaction networks, as a huge fraction of the known regulations is only described in the (not machine-readable) scientific literature. In addition, compared to protein interactions, only a few conserved regulations are known, and regulatory elements appear to be strongly context-specific. In this work, the cross-species analysis of regulatory interaction networks is enabled with software tools and databases for global (ConReg) and thousands of context-specific (CroCo) regulatory interactions that are derived and integrated from the scientific literature, binding site predictions and experimental data. Genes and their protein products are the main players in biological networks. However, to date, the aspect is neglected that a gene can encode different proteins. These alternative proteins can differ strongly from each other with respect to their molecular structure, function and their role in networks. The identification of conserved and species-specific splice variants and the integration of variants in network models will allow a more complete cross-species transfer and comparison of biological networks. With ISAR we support the cross-species transfer and comparison of alternative variants by introducing a gene-structure aware (i.e. exon-intron structure aware) multiple sequence alignment approach for variants from orthologous and paralogous genes. The methods presented here and the appropriate databases allow the cross-species transfer of biological networks, the comparison of thousands of context-specific networks, and the cross-species comparison of alternatively spliced variants. Thus, they can be used as a starting point for the understanding of regulatory and signaling mechanisms in many biological systems.In biologischen Systemen werden Stoffwechselprozesse, Signalübertragungen sowie die Regulation von Gen- und Proteinexpression maßgeblich durch biologische Netzwerke gesteuert. Hochdurchsatz-Experimente ermöglichen die Messung einer Vielzahl von zellulären Zuständen und Wechselwirkungen. Allerdings sind für die meisten Systeme und Kontexte biologische Netzwerke nach wie vor unbekannt. Gen- und Proteinannotationen werden häufig von Modellorganismen übernommen. Demnach stellt sich die Frage, ob auch biologische Netzwerke und damit die systemischen Eigenschaften ähnlich sind und übertragen werden können. In dieser Arbeit wird: (i) Die Konservierung und (ii) die artenübergreifende Übertragung von eukaryotischen Protein-Interaktions- und regulatorischen (Transkriptionsfaktor-Zielgen) Netzwerken, sowie (iii) die Konservierung von Spleißvarianten untersucht. Interaktionen können im einfachsten Fall nur auf Basis der Sequenzähnlichkeit zwischen orthologen Genen übertragen werden. Allerdings führt eine solche Übertragung oft dazu, dass nur sehr wenige Interaktionen übertragen werden können (hoher bis mittlerer Sequenzschwellwert) oder dass ein Großteil der übertragenden Interaktionen sehr spekulativ ist (niedriger Sequenzschwellwert). Verbesserte Methoden berücksichtigen deswegen zusätzlich noch die Annotationen der Orthologen, Eigenschaften der Interaktionspartner sowie die Netzwerkstruktur und können somit auch Interaktionen auf phylogenetisch weit entfernte Arten (zuverlässig) übertragen. In dieser Arbeit wird ein solcher Ansatz für die Übertragung von Protein-Interaktionen vorgestellt (COIN). COIN verwendet Verfahren des maschinellen Lernens, um Interaktionen als richtig (konserviert) oder als falsch übertragend (nicht konserviert) zu klassifizieren. Der Vergleich und die artenübergreifende Übertragung von regulatorischen Interaktionen ist im Vergleich zu Protein-Interaktionen schwieriger, da ein Großteil der bekannten Regulationen nur in der (nicht maschinenlesbaren) wissenschaftlichen Literatur beschrieben ist. Zudem sind im Vergleich zu Protein-Interaktionen nur wenige konservierte Regulationen bekannt und regulatorische Elemente scheinen stark kontextabhängig zu sein. In dieser Arbeit wird die artenübergreifende Analyse von regulatorischen Netzwerken mit Softwarewerkzeugen und Datenbanken für globale (ConReg) und kontextspezifische (CroCo) regulatorische Interaktionen ermöglicht. Regulationen wurden dafür aus Vorhersagen, experimentellen Daten und aus der wissenschaftlichen Literatur abgeleitet und integriert. Grundbaustein für viele biologische Netzwerke sind Gene und deren Proteinprodukte. Bisherige Netzwerkmodelle vernachlässigen allerdings meist den Aspekt, dass ein Gen verschiedene Proteine kodieren kann, die sich von der Funktion, der Proteinstruktur und der Rolle in Netzwerken stark voneinander unterscheiden können. Die Identifizierung von konservierten und artspezifischen Proteinprodukten und deren Integration in Netzwerkmodelle würde einen vollständigeren Übertrag und Vergleich von Netzwerken ermöglichen. In dieser Arbeit wird der artenübergreifende Vergleich von Proteinprodukten mit einem multiplen Sequenzalignmentverfahren für alternative Varianten von paralogen und orthologen Genen unterstützt, unter Berücksichtigung der bekannten Exon-Intron-Grenzen (ISAR). Die in dieser Arbeit vorgestellten Verfahren, Datenbanken und Softwarewerkzeuge ermöglichen die Übertragung von biologischen Netzwerken, den Vergleich von tausenden kontextspezifischen Netzwerken und den artenübergreifenden Vergleich von alternativen Varianten. Sie können damit die Ausgangsbasis für ein Verständnis von Kommunikations- und Regulationsmechanismen in vielen biologischen Systemen bilden

    Innovation brokers and their roles in value chain-network innovation: preliminary findings and a research agenda

    Get PDF
    Intervention approaches have been implemented in developing countries to enhance farmer's livelihoods through improving their linkages to markets and inclusiveness in agricultural value chains. Such interventions are aimed at facilitating the inclusion of small farmers not just in the vertical activities of the value chain (coordination of the chain) but also in the horizontal activities (cooperation in the chain). Therefore value addition is made by not just innovating products and services, but also by innovating social processes, which we define as Value Chain-Network Innovation. In Value Chain-Network Innovation, linkage formation among networks and optimisation is one of the main objectives of innovation enhancing interventions. Here some important roles for innovation brokers are envisaged as crucial to dynamise this process, connecting different actors of the innovation system, paying special attention to the weaker ones. However, little attention has been given to identify different innovation brokering roles in those approaches, and to the need that they facilitate innovation processes and open safe spaces for innovation and social learning at different organisational settings and levels, to have more effective and sustainable impacts. This paper offers some preliminary empirical evidence of the roles of innovation brokers in a developing country setting, recognising the context-sensitive nature of innovations. Two cases from work experience with intervention approaches are analysed in light of the theories of innovation brokering, presenting some empirical evidence of different types of arrangements made by innovation brokers. A third case was taken from the literature. Data from questionnaires, key informant interviews, participant observations of different types of activities and processes carried out in those approaches, SWOT analysis and project reports were used for the analysis of different types of brokering roles and to draw some lessons. One important outcome of this preliminary analysis was that Information and Communication Technologies (ICT) in integration with other media facilitate new ways of social organisation and interaction of innovation networks, which offer more possibilities for processes of innovation, aggregating value to the production and sharing of knowledge. There is already a transition of paradigm for approaching agricultural innovation to more participative and open approaches, which offers a promissory landscape for organising the value chain actors in a way that is more favourable for small farmers

    GNSS-based passive radar techniques for maritime surveillance

    Get PDF
    The improvement of maritime traffic safety and security is a subject of growing interest, since the traffic is constantly increasing. In fact, a large number of human activities take place in maritime domain, varying from cruise and trading ships up to vessels involved in nefarious activities such as piracy, human smuggling or terrorist actions. The systems based on Automatic Identification System (AIS) transponder cannot cope with non-cooperative or non-equipped vessels that instead can be detected, tracked and identified by means of radar system. In particular, passive bistatic radar (PBR) systems can perform these tasks without a dedicated transmitter, since they exploit illuminators of opportunity as transmitters. The lack of a dedicated transmitter makes such systems low cost and suitable to be employed in areas where active sensors cannot be placed such as, for example, marine protected areas. Innovative solutions based on terrestrial transmitters have been considered in order to increase maritime safety and security, but these kinds of sources cannot guarantee a global coverage, such as in open sea. To overcome this problem, the exploitation of global navigation satellites system (GNSS) as transmitters of opportunity is a prospective solution. The global, reliable and persistent nature of these sources makes them potentially able to guarantee the permanent monitoring of both coastal and open sea areas. To this aim, this thesis addresses the exploitation of Global Navigation Satellite Systems (GNSS) as transmitters of opportunity in passive bistatic radar (PBR) systems for maritime surveillance. The main limitation of this technology is the restricted power budget provided by navigation satellites, which makes it necessary to define innovative moving target detection techniques specifically tailored for the system under consideration. For this reason, this thesis puts forward long integration time techniques able to collect the signal energy over long time intervals (tens of seconds), allowing the retrieval of suitable levels of signal-to-disturbance ratios for detection purposes. The feasibility of this novel application is firstly investigated in a bistatic system configuration. A long integration time moving target detection technique working in bistatic range&Doppler plane is proposed and its effectiveness is proved against synthetic and experimental datasets. Subsequently the exploitation of multiple transmitters for the joint detection and localization of vessels at sea is also investigated. A single-stage approach to jointly detect and localize the ship targets by making use of long integration times (tens of seconds) and properly exploiting the spatial diversity offered by such a configuration is proposed. Furthermore, the potential of the system to extract information concerning the detected target characteristics for further target classification is assessed

    Interaction of antenna systems with human body

    Get PDF
    The research investigates the influence on the human body on a communication system. To understand this, the effect of hands free kit (HFK) on energy absorption in the body was investigated when operating a smart phone at 2G. Findings on the research are given in the thesis report. Also, the influence of the way in which a phone is held on a phone s received power was investigated. The result was compared to that obtained using a hand phantom acquired from SPEAG. This was to check if the hand phantom best represents the human hand when using it in experiments. The setup for the experiment was in an anechoic chamber at Loughborough University. The mobile phone transmitted in the 2G system. In further experiments carried out on the body, two antennas were attached to the body in six different orientations to receive power from a source creating a Single Input Multiple Output (SIMO) system. The antennas used were monopoles mounted on a circular ground plane. These antennas were designed and constructed with the influence of the body taken into consideration. The use of diversity techniques to improve transmission to an on-body system is investigated with the antennas on the body. For each alignment, the transmission to the on-body was compared with the transmission to the corresponding off-body (free space). Experiments for this work were carried out in three environments
    corecore