134 research outputs found

    Optimizing Continued Fraction Expansion Based IIR Realization of Fractional Order Differ-Integrators with Genetic Algorithm

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Rational approximation of fractional order (FO) differ-integrators via Continued Fraction Expansion (CFE) is a well known technique. In this paper, the nominal structures of various generating functions are optimized using Genetic Algorithm (GA) to minimize the deviation in magnitude and phase response between the original FO element and the rationalized discrete time filter in Infinite Impulse Response (IIR) structure. The optimized filter based realizations show better approximation of the FO elements in comparison with the existing methods and is demonstrated by the frequency response of the IIR filters.This work has been supported by the Department of Science & Technology (DST), Govt. of India under the PURSE programme

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Design of digital differentiators

    Get PDF
    A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller

    Get PDF
    The aim of this paper is to present a holistic approach to modeling and FPGA implementation of a permanent magnet synchronous motor (PMSM) speed controller. The whole system is modeled in the Matlab Simulink environment. The controller is then translated to discrete time and remodeled using System Generator blocks, directly synthesizable into FPGA hardware. The algorithm is further refined and factorized to take into account hardware constraints, so as to fit into a low cost FPGA, without significantly increasing the execution time. The resulting controller is then integrated together with sensor interfaces and analysis tools and implemented into an FPGA device. Experimental results validate the controller and verify the design

    Continuous-time Algorithms and Analog Integrated Circuits for Solving Partial Differential Equations

    Get PDF
    Analog computing (AC) was the predominant form of computing up to the end of World War II. The invention of digital computers (DCs) followed by developments in transistors and thereafter integrated circuits (IC), has led to exponential growth in DCs over the last few decades, making ACs a largely forgotten concept. However, as described by the impending slow-down of Moore’s law, the performance of DCs is no longer improving exponentially, as DCs are approaching clock speed, power dissipation, and transistor density limits. This research explores the possibility of employing AC concepts, albeit using modern IC technologies at radio frequency (RF) bandwidths, to obtain additional performance from existing IC platforms. Combining analog circuits with modern digital processors to perform arithmetic operations would make the computation potentially faster and more energy-efficient. Two AC techniques are explored for computing the approximate solutions of linear and nonlinear partial differential equations (PDEs), and they were verified by designing ACs for solving Maxwell\u27s and wave equations. The designs were simulated in Cadence Spectre for different boundary conditions. The accuracies of the ACs were compared with finite-deference time-domain (FDTD) reference techniques. The objective of this dissertation is to design software-defined ACs with complementary digital logic to perform approximate computations at speeds that are several orders of magnitude greater than competing methods. ACs trade accuracy of the computation for reduced power and increased throughput. Recent examples of ACs are accurate but have less than 25 kHz of analog bandwidth (Fcompute) for continuous-time (CT) operations. In this dissertation, a special-purpose AC, which has Fcompute = 30 MHz (an equivalent update rate of 625 MHz) at a power consumption of 200 mW, is presented. The proposed AC employes 180 nm CMOS technology and evaluates the approximate CT solution of the 1-D wave equation in space and time. The AC is 100x, 26x, 2.8x faster when compared to the MATLAB- and C-based FDTD solvers running on a computer, and systolic digital implementation of FDTD on a Xilinx RF-SoC ZCU1275 at 900 mW (x15 improvement in power-normalized performance compared to RF-SoC), respectively

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    • …
    corecore