57,408 research outputs found

    Transport of video over partial order connections

    Get PDF
    A Partial Order and partial reliable Connection (POC) is an end-to-end transport connection authorized to deliver objects in an order that can differ from the transmitted one. Such a connection is also authorized to lose some objects. The POC concept is motivated by the fact that heterogeneous best-effort networks such as Internet are plagued by unordered delivery of packets and losses, which tax the performances of current applications and protocols. It has been shown, in several research works, that out of order delivery is able to alleviate (with respect to CO service) the use of end systems’ communication resources. In this paper, the efficiency of out-of-sequence delivery on MPEG video streams processing is studied. Firstly, the transport constraints (in terms of order and reliability) that can be relaxed by MPEG video decoders, for improving video transport, are detailed. Then, we analyze the performance gain induced by this approach in terms of blocking times and recovered errors. We demonstrate that POC connections fill not only the conceptual gap between TCP and UDP but also provide real performance improvements for the transport of multimedia streams such MPEG video

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    On the Limit of Fountain MDC Codes for Video Peer-To-Peer Networks

    Get PDF
    Video streaming for heterogeneous types of devices, where nodes have different devices characteristics in terms of computational capacity and display, is usually handled by encoding the video with different qualities. This is not well suited for Peer-To-Peer (P2P) systems, as a single peer group can only share content of the same quality, thus limiting the peer group size and efficiency. To address this problem, several existing works propose the use of Multiple Descriptions Coding (MDC). The concept of this type of video codec is to split a video in a number of descriptions which can be used on their own, or aggregated to improve the global quality of the video. Unfortunately existing MDC codes are not flexible, as the video is split in a defined number of descriptions. In this paper, we focus on the practical feasibility of using a Fountain MDC code with properties similar to existing Fountain erasure codes, including the ability to create any number of descriptions when needed (on the fly). We perform simulations using selected pictures to assess the feasibility of using these codes, knowing that they should improve the availability of the video pieces in a P2P system and hence the video streaming quality. We observe that, although this idea seems promising, the evaluated benefits, demonstrated by the PSNR values, are limited when used in a real P2P video streaming system

    Development of the WAIS-III: A Brief Overview, History, and Description

    Get PDF
    • 

    corecore