138 research outputs found

    Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications

    Get PDF
    With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies ranging from emerging memristive devices, to established Field Programmable Gate Arrays (FPGAs), and mature Complementary Metal Oxide Semiconductor (CMOS) technology can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. After providing the required background, we unify the sparsely distributed research on neural network and neuromorphic hardware implementations as applied to the healthcare domain. In addition, we benchmark various hardware platforms by performing a biomedical electromyography (EMG) signal processing task and drawing comparisons among them in terms of inference delay and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that different accelerators and neuromorphic processors introduce to healthcare and biomedical domains. This paper can serve a large audience, ranging from nanoelectronics researchers, to biomedical and healthcare practitioners in grasping the fundamental interplay between hardware, algorithms, and clinical adoption of these tools, as we shed light on the future of deep networks and spiking neuromorphic processing systems as proponents for driving biomedical circuits and systems forward.Comment: Submitted to IEEE Transactions on Biomedical Circuits and Systems (21 pages, 10 figures, 5 tables

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Implementing radial basis function neural networks in pulsed analogue VLSI

    Get PDF

    Efficient Neuromorphic Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems

    Get PDF
    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform everyday. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this thesis demonstrates the encoding of biological neural and synaptic functionalities in the underlying physics of electron spin. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing neuro-mimetic device structures is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations

    Two Dimensional Dynamic Synapse With Programmable Spatio-Temporal Dynamics For Neuromorphic Computing

    Get PDF
    In today’s era of big-data, a new computing paradigm beyond today’s von-Neumann architecture is needed to process large-scale datasets efficiently. In response to this need, the field of neuromorphic computing has recently emerged. Inspired by the brain, neuromorphic approaches are better at complex tasks than even supercomputers and show much better efficiency. This is because, unlike modern computers that use digital ‘0’ and ‘1’ for computation, biological neural networks exhibit analog changes in synaptic connections during the decision-making and learning processes. However, the existing approaches of using digital complementary metal-oxide-semiconductor (CMOS) devices to emulate gradual/analog behaviors in the neural network are energy intensive and unsustainable; furthermore, emerging memristor devices still face challenges such as non-linearities and large write noise. Here, we propose a novel artificial synaptic device use of an electrochemical dynamic synapse based on two-dimensional (2D) materials. The synaptic weight (channel conductance) of these dynamic synapses can be tuned via both a long-term doping effect from electrochemical intercalation and a short-term doping effect from ionic gating, thereby demonstrating programmable spatio-temporal dynamics, an essential feature for implementing spiking neural networks (SNNs). The electrical conductance of the channel is reversibly modulated by a concentration of Li ions between the layers of the 2D materials. This fundamentally different mechanism allows us to achieve a good energy efficiency (5000 non-volatile states), good endurance and retention performances, and a linear and symmetric resistance response. We demonstrate essential neuronal functions such as excitatory and inhibitory synapses, short term and long term plasticity, paired pulse facilitation (PPF), spike timing dependent plasticity (STDP), and spike rating dependent plasticity (SRDP), with good repeatability. Our scaling study suggests that this simple, two-dimensional (2D) synapse is scalable in terms of switching energy and speed. This work can lead to the low-power hardware implementation of neural networks for neuromorphic computing

    Ameliorating integrated sensor drift and imperfections: an adaptive "neural" approach

    Get PDF

    Long Short-Term Memory with Spin-Based Binary and Non-Binary Neurons

    Get PDF
    Research in the field of neural networks has shown advancement in the device technology and machine learning application platforms of use. Some of the major applications of neural network prominent in recent scenarios include image recognition, machine translation, text classification and object categorization. With these advancements, there is a need for more energy-efficient and low area overhead circuits in the hardware implementations. Previous works have concentrated primarily on CMOS technology-based implementations which can face challenges of high energy consumption, memory wall, and volatility complications for standby modes. We herein developed a low-power and area-efficient hardware implementation for Long Short-Term Memory (LSTM) networks as a type of Recurrent Neural Network (RNN). To achieve energy efficiency while maintaining comparable accuracy commensurate with the ideal case, the LSTM network herein uses Resistive Random-Access Memory (ReRAM) based synapses along with spin-based non-binary neurons. The proposed neuron has a novel activation mechanism that mimics the ideal hyperbolic tangent (tanh) and sigmoid activation functions with five levels of output accuracy. Using ideal, binary, and the proposed non-binary neurons, we investigated the performance of an LSTM network for name prediction dataset. The comparison of the results shows that our proposed neuron can achieve up to 85% accuracy and perplexity of 1.56, which attains performance similar to algorithmic expectations of near-ideal neurons. The simulations show that our proposed neuron achieves up to 34-fold improvement in energy efficiency and 2-fold area reduction compared to the CMOS-based non-binary designs

    Applications of memristors in conventional analogue electronics

    Get PDF
    This dissertation presents the steps employed to activate and utilise analogue memristive devices in conventional analogue circuits and beyond. TiO2 memristors are mainly utilised in this study, and their large variability in operation in between similar devices is identified. A specialised memristor characterisation instrument is designed and built to mitigate this issue and to allow access to large numbers of devices at a time. Its performance is quantified against linear resistors, crossbars of linear resistors, stand-alone memristive elements and crossbars of memristors. This platform allows for a wide range of different pulsing algorithms to be applied on individual devices, or on crossbars of memristive elements, and is used throughout this dissertation. Different ways of achieving analogue resistive switching from any device state are presented. Results of these are used to devise a state-of-art biasing parameter finder which automatically extracts pulsing parameters that induce repeatable analogue resistive switching. IV measurements taken during analogue resistive switching are then utilised to model the internal atomic structure of two devices, via fittings by the Simmons tunnelling barrier model. These reveal that voltage pulses modulate a nano-tunnelling gap along a conical shape. Further retention measurements are performed which reveal that under certain conditions, TiO2 memristors become volatile at short time scales. This volatile behaviour is then implemented into a novel SPICE volatile memristor model. These characterisation methods of solid-state devices allowed for inclusion of TiO2 memristors in practical electronic circuits. Firstly, in the context of large analogue resistive crossbars, a crosspoint reading method is analysed and improved via a 3-step technique. Its scaling performance is then quantified via SPICE simulations. Next, the observed volatile dynamics of memristors are exploited in two separate sequence detectors, with applications in neuromorphic engineering. Finally, the memristor as a programmable resistive weight is exploited to synthesise a memristive programmable gain amplifier and a practical memristive automatic gain control circuit.Open Acces
    • …
    corecore