442 research outputs found

    An Adaptive Multimedia-Oriented Handoff Scheme for IEEE 802.11 WLANs

    Full text link
    Previous studies have shown that the actual handoff schemes employed in the IEEE 802.11 Wireless LANs (WLANs) do not meet the strict delay constraints placed by many multimedia applications like Voice over IP. Both the active and the passive supported scan modes in the standard handoff procedure have important delay that affects the Quality of Service (QoS) required by the real-time communications over 802.11 networks. In addition, the problem is further compounded by the fact that limited coverage areas of Access Points (APs) occupied in 802.11 infrastructure WLANs create frequent handoffs. We propose a new optimized and fast handoff scheme that decrease both handoff latency and occurrence by performing a seamless prevent scan process and an effective next-AP selection. Through simulations and performance evaluation, we show the effectiveness of the new adaptive handoff that reduces the process latency and adds new context-based parameters. The Results illustrate a QoS delay-respect required by applications and an optimized AP-choice that eliminates handoff events that are not beneficial.Comment: 20 pages, 14 figures, 4 table

    A framework for fast handoff schemes in wireless ATM networks

    Get PDF
    Includes bibliographical references.In this research, we focus on providing a framework that extends the fixed ATM standard to support user mobility in future WATM networks. The WATM architecture allows for the migration of fixed ATM networks without major modifications. Thus most of the mobility functions are implemented on the wireless access network. The most important component supporting mobility in a cluster is the Mobility Enhanced Switch (MES). We propose using direct links between adjacent MESs to support Permanent Virtual Channels (PVCs) in order to facilitate fast inter-cluster handoffwith minimum handofflatency. This research addresses a framework on handoff mobility by proposing three fast handoff re-routing schemes based on the support of PVCs

    Cooperation Between Stations in Wireless Networks

    Get PDF
    In a wireless network, mobile nodes (MNs) repeatedly perform tasks such as layer 2 (L2) handoff, layer 3 (L3) handoff and authentication. These tasks are critical, particularly for real-time applications such as VoIP. We propose a novel approach, namely Cooperative Roaming (CR), in which MNs can collaborate with each other and share useful information about the network in which they move. We show how we can achieve seamless L2 and L3 handoffs regardless of the authentication mechanism used and without any changes to either the infrastructure or the protocol. In particular, we provide a working implementation of CR and show how, with CR, MNs can achieve a total L2+L3 handoff time of less than 16 ms in an open network and of about 21 ms in an IEEE 802.11i network. We consider behaviors typical of IEEE 802.11 networks, although many of the concepts and problems addressed here apply to any kind of mobile network

    Fourth Generation Wireless Systems: Requirements and Challenges for the Next Frontier

    Get PDF
    Fourth generation wireless systems (4G) are likely to reach the consumer market in another 4-5 years. 4G comes with the promise of increased bandwidth, higher speeds, greater interoperability across communication protocols, and user friendly, innovative, and secure applications. In this article, I list the requirements of the 4G systems by considering the needs of the users in the future. These requirements can be met if technical and business challenges can be overcome. Technical challenges include mobility management, quality of service, interoperability, high data rate, security, survivability, spectrum, intelligent mobile devices, middleware, and network access. I discuss the most plausible solutions to these technical challenges in this paper. Business-related challenges include billing, payment methods, pricing, size of investments, content provision and mediation, and the trade-off between richness and reach. If these technical and business challenges can be met, then 4G will become the next frontier in data and voice communication infrastructure

    Selective Advance Reservations Based on Host Movement Detection and Resource-Aware Handoff

    Get PDF
    This paper proposes a new mechanism, which addresses the excessive advance reservation requirements of QoS guarantee methods for mobile Internet. To save resources for excessive advance reservations, the proposed mechanism employs a movement detection scheme for a mobile host (MH) using link-layer functionalities. With the movement detection scheme, advance reservations can be established at only where a MH is likely to visit soon. Another novel feature of our mechanism is resource-aware handoff direction scheme that allows a MH to choose its next BS according to not only the link-layer signal strength, but also the available amount of resources in the reachable base stations (BSs). It considerably decreases a probability that QoS is disrupted due to the failure in advance reservation request. Also, the proposed mechanism requires fewer functional and structural changes to the current Internet components and protocols since all the enhanced features are integrated only into leaf BSs and MHs. It does not suffer from the problems of the conventional approaches based on Mobile IP and RSVP Tunnel, such as non-optimal routing path and signalling overhead. Our experiment results show that the proposed mechanism successfully eliminates the overhead for useless advance reservations while guaranteeing seamless QoS for MHs. The performance comparison demonstrates that our mechanism slightly outperforms the conventional approaches while requiring fewer modifications and additions to the existing Internet architecture. This performance advantage of the proposed mechanism becomes noticeable when the network is congested and the mobility of a host is high. Copyright © 2006 John Wiley & Sons, Ltd

    Mobile IP movement detection optimisations in 802.11 wireless LANs

    Get PDF
    The IEEE 802.11 standard was developed to support the establishment of highly flexible wireless local area networks (wireless LANs). However, when an 802.11 mobile node moves from a wireless LAN on one IP network to a wireless LAN on a different network, an IP layer handoff occurs. During the handoff, the mobile node's IP settings must be updated in order to re-establish its IP connectivity at the new point of attachment. The Mobile IP protocol allows a mobile node to perform an IP handoff without breaking its active upper-layer sessions. Unfortunately, these handoffs introduce large latencies into a mobile node's traffic, during which packets are lost. As a result, the mobile node's upper-layer sessions and applications suffer significant disruptions due to this handoff latency. One of the main components of a Mobile IP handoff is the movement detection process, whereby a mobile node senses that it is attached to a new IP network. This procedure contributes significantly to the total Mobile IP handover latency and resulting disruption. This study investigates different mechanisms that aim to lower movement detection delays and thereby improve Mobile IP performance. These mechanisms are considered specifically within the context of 802.11 wireless LANs. In general, a mobile node detects attachment to a new network when a periodic IP level broadcast (advertisement) is received from that network. It will be shown that the elimination of this dependence on periodic advertisements, and the reliance instead on external information from the 802.11 link layer, results in both faster and more efficient movement detection. Furthermore, a hybrid system is proposed that incorporates several techniques to ensure that movement detection performs reliably within a variety of different network configurations. An evaluation framework is designed and implemented that supports the assessment of a wide range of movement detection mechanisms. This test bed allows Mobile IP handoffs to be analysed in detail, with specific focus on the movement detection process. The performance of several movement detection optimisations is compared using handoff latency and packet loss as metrics. The evaluation framework also supports real-time Voice over IP (VoIP) traffic. This is used to ascertain the effects that different movement detection techniques have on the output voice quality. These evaluations not only provide a quantitative performance analysis of these movement detection mechanisms, but also a qualitative assessment based on a VoIP application
    • …
    corecore