5,635 research outputs found

    Robust Visual Tracking via Convolutional Networks

    Full text link
    Deep networks have been successfully applied to visual tracking by learning a generic representation offline from numerous training images. However the offline training is time-consuming and the learned generic representation may be less discriminative for tracking specific objects. In this paper we present that, even without offline training with a large amount of auxiliary data, simple two-layer convolutional networks can be powerful enough to develop a robust representation for visual tracking. In the first frame, we employ the k-means algorithm to extract a set of normalized patches from the target region as fixed filters, which integrate a series of adaptive contextual filters surrounding the target to define a set of feature maps in the subsequent frames. These maps measure similarities between each filter and the useful local intensity patterns across the target, thereby encoding its local structural information. Furthermore, all the maps form together a global representation, which is built on mid-level features, thereby remaining close to image-level information, and hence the inner geometric layout of the target is also well preserved. A simple soft shrinkage method with an adaptive threshold is employed to de-noise the global representation, resulting in a robust sparse representation. The representation is updated via a simple and effective online strategy, allowing it to robustly adapt to target appearance variations. Our convolution networks have surprisingly lightweight structure, yet perform favorably against several state-of-the-art methods on the CVPR2013 tracking benchmark dataset with 50 challenging videos

    MAVOT: Memory-Augmented Video Object Tracking

    Full text link
    We introduce a one-shot learning approach for video object tracking. The proposed algorithm requires seeing the object to be tracked only once, and employs an external memory to store and remember the evolving features of the foreground object as well as backgrounds over time during tracking. With the relevant memory retrieved and updated in each tracking, our tracking model is capable of maintaining long-term memory of the object, and thus can naturally deal with hard tracking scenarios including partial and total occlusion, motion changes and large scale and shape variations. In our experiments we use the ImageNet ILSVRC2015 video detection dataset to train and use the VOT-2016 benchmark to test and compare our Memory-Augmented Video Object Tracking (MAVOT) model. From the results, we conclude that given its oneshot property and simplicity in design, MAVOT is an attractive approach in visual tracking because it shows good performance on VOT-2016 benchmark and is among the top 5 performers in accuracy and robustness in occlusion, motion changes and empty target.Comment: Submitted to CVPR201

    Selectivity or Invariance: Boundary-aware Salient Object Detection

    Full text link
    Typically, a salient object detection (SOD) model faces opposite requirements in processing object interiors and boundaries. The features of interiors should be invariant to strong appearance change so as to pop-out the salient object as a whole, while the features of boundaries should be selective to slight appearance change to distinguish salient objects and background. To address this selectivity-invariance dilemma, we propose a novel boundary-aware network with successive dilation for image-based SOD. In this network, the feature selectivity at boundaries is enhanced by incorporating a boundary localization stream, while the feature invariance at interiors is guaranteed with a complex interior perception stream. Moreover, a transition compensation stream is adopted to amend the probable failures in transitional regions between interiors and boundaries. In particular, an integrated successive dilation module is proposed to enhance the feature invariance at interiors and transitional regions. Extensive experiments on six datasets show that the proposed approach outperforms 16 state-of-the-art methods

    Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection

    Full text link
    In this paper, we analyze failure cases of state-of-the-art detectors and observe that most hard false positives result from classification instead of localization and they have a large negative impact on the performance of object detectors. We conjecture there are three factors: (1) Shared feature representation is not optimal due to the mismatched goals of feature learning for classification and localization; (2) multi-task learning helps, yet optimization of the multi-task loss may result in sub-optimal for individual tasks; (3) large receptive field for different scales leads to redundant context information for small objects. We demonstrate the potential of detector classification power by a simple, effective, and widely-applicable Decoupled Classification Refinement (DCR) network. In particular, DCR places a separate classification network in parallel with the localization network (base detector). With ROI Pooling placed on the early stage of the classification network, we enforce an adaptive receptive field in DCR. During training, DCR samples hard false positives from the base detector and trains a strong classifier to refine classification results. During testing, DCR refines all boxes from the base detector. Experiments show competitive results on PASCAL VOC and COCO without any bells and whistles. Our codes are available at: https://github.com/bowenc0221/Decoupled-Classification-Refinement.Comment: under review. arXiv admin note: text overlap with arXiv:1803.0679

    Twin-GAN -- Unpaired Cross-Domain Image Translation with Weight-Sharing GANs

    Full text link
    We present a framework for translating unlabeled images from one domain into analog images in another domain. We employ a progressively growing skip-connected encoder-generator structure and train it with a GAN loss for realistic output, a cycle consistency loss for maintaining same-domain translation identity, and a semantic consistency loss that encourages the network to keep the input semantic features in the output. We apply our framework on the task of translating face images, and show that it is capable of learning semantic mappings for face images with no supervised one-to-one image mapping

    Deep Matching and Validation Network -- An End-to-End Solution to Constrained Image Splicing Localization and Detection

    Full text link
    Image splicing is a very common image manipulation technique that is sometimes used for malicious purposes. A splicing detec- tion and localization algorithm usually takes an input image and produces a binary decision indicating whether the input image has been manipulated, and also a segmentation mask that corre- sponds to the spliced region. Most existing splicing detection and localization pipelines suffer from two main shortcomings: 1) they use handcrafted features that are not robust against subsequent processing (e.g., compression), and 2) each stage of the pipeline is usually optimized independently. In this paper we extend the formulation of the underlying splicing problem to consider two input images, a query image and a potential donor image. Here the task is to estimate the probability that the donor image has been used to splice the query image, and obtain the splicing masks for both the query and donor images. We introduce a novel deep convolutional neural network architecture, called Deep Matching and Validation Network (DMVN), which simultaneously localizes and detects image splicing. The proposed approach does not depend on handcrafted features and uses raw input images to create deep learned representations. Furthermore, the DMVN is end-to-end op- timized to produce the probability estimates and the segmentation masks. Our extensive experiments demonstrate that this approach outperforms state-of-the-art splicing detection methods by a large margin in terms of both AUC score and speed.Comment: 9 pages, 10 figure

    What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis

    Full text link
    Many new proposals for scene text recognition (STR) models have been introduced in recent years. While each claim to have pushed the boundary of the technology, a holistic and fair comparison has been largely missing in the field due to the inconsistent choices of training and evaluation datasets. This paper addresses this difficulty with three major contributions. First, we examine the inconsistencies of training and evaluation datasets, and the performance gap results from inconsistencies. Second, we introduce a unified four-stage STR framework that most existing STR models fit into. Using this framework allows for the extensive evaluation of previously proposed STR modules and the discovery of previously unexplored module combinations. Third, we analyze the module-wise contributions to performance in terms of accuracy, speed, and memory demand, under one consistent set of training and evaluation datasets. Such analyses clean up the hindrance on the current comparisons to understand the performance gain of the existing modules.Comment: Oral paper at ICCV'19. Our code is publicly available. (https://github.com/clovaai/deep-text-recognition-benchmark

    Temporal Recurrent Networks for Online Action Detection

    Full text link
    Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driver assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS'14. The results show that TRN significantly outperforms the state-of-the-art

    Fast detection of multiple objects in traffic scenes with a common detection framework

    Full text link
    Traffic scene perception (TSP) aims to real-time extract accurate on-road environment information, which in- volves three phases: detection of objects of interest, recognition of detected objects, and tracking of objects in motion. Since recognition and tracking often rely on the results from detection, the ability to detect objects of interest effectively plays a crucial role in TSP. In this paper, we focus on three important classes of objects: traffic signs, cars, and cyclists. We propose to detect all the three important objects in a single learning based detection framework. The proposed framework consists of a dense feature extractor and detectors of three important classes. Once the dense features have been extracted, these features are shared with all detectors. The advantage of using one common framework is that the detection speed is much faster, since all dense features need only to be evaluated once in the testing phase. In contrast, most previous works have designed specific detectors using different features for each of these objects. To enhance the feature robustness to noises and image deformations, we introduce spatially pooled features as a part of aggregated channel features. In order to further improve the generalization performance, we propose an object subcategorization method as a means of capturing intra-class variation of objects. We experimentally demonstrate the effectiveness and efficiency of the proposed framework in three detection applications: traffic sign detection, car detection, and cyclist detection. The proposed framework achieves the competitive performance with state-of- the-art approaches on several benchmark datasets.Comment: Appearing in IEEE Transactions on Intelligent Transportation System

    Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification

    Full text link
    Learning generic and robust feature representations with data from multiple domains for the same problem is of great value, especially for the problems that have multiple datasets but none of them are large enough to provide abundant data variations. In this work, we present a pipeline for learning deep feature representations from multiple domains with Convolutional Neural Networks (CNNs). When training a CNN with data from all the domains, some neurons learn representations shared across several domains, while some others are effective only for a specific one. Based on this important observation, we propose a Domain Guided Dropout algorithm to improve the feature learning procedure. Experiments show the effectiveness of our pipeline and the proposed algorithm. Our methods on the person re-identification problem outperform state-of-the-art methods on multiple datasets by large margins.Comment: To appear in CVPR201
    corecore