932 research outputs found

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso

    Projective geometries arising from Elekes-Szab\'o problems

    Full text link
    We generalise the Elekes-Szab\'o theorem to arbitrary arity and dimension and characterise the complex algebraic varieties without power saving. The characterisation involves certain algebraic subgroups of commutative algebraic groups endowed with an extra structure arising from a skew field of endomorphisms. We also extend the Erd\H{o}s-Szemer\'edi sum-product phenomenon to elliptic curves. Our approach is based on Hrushovski's framework of pseudo-finite dimensions and the abelian group configuration theorem.Comment: 48 pages. Minor improvements in presentation. To appear in ASEN

    A structural characterisation of Av(1324) and new bounds on its growth rate

    Get PDF
    We establish an improved lower bound of 10.271 for the exponential growth rate of the class of permutations avoiding the pattern 1324, and an improved upper bound of 13.5. These results depend on a new exact structural characterisation of 1324-avoiders as a subclass of an infinite staircase grid class, together with precise asymptotics of a small domino subclass whose enumeration we relate to West-two-stack-sortable permutations and planar maps. The bounds are established by carefully combining copies of the dominoes in particular ways consistent with the structural characterisation. The lower bound depends on concentration results concerning the substructure of a typical domino, the determination of exactly when dominoes can be combined in the fewest distinct ways, and technical analysis of the resulting generating function

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    Characterizing 2-crossing-critical graphs

    Full text link
    It is very well-known that there are precisely two minimal non-planar graphs: K5K_5 and K3,3K_{3,3} (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: they each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the M\"obius Ladder V10V_{10}; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10V_{10}; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8V_{8}.Comment: 176 pages, 28 figure
    corecore