1,240 research outputs found

    Negative Bias Temperature Instability (NBTI) Monitoring and Mitigation Technique for MOSFET

    Get PDF
    äżźćŁ«è«–

    A surface-potential-based compact model for partially-depleted silicon-on-insulator MOSFETs

    No full text
    With the continuous scaling of CMOS technologies, Silicon-on-Insulator (SOI) technologies have become more competitive compared to bulk, due to their lower parasitic capacitances and leakage currents. The shift towards high frequency, low power circuitry, coupled with the increased maturity of SOI process technologies, have made SOI a genuinely costeffective solution for leading edge applications. The original STAG2 model, developed at the University of Southampton, UK, was among the first compact circuit simulation models to specifically model the behaviour of Partially-Depleted (PD) SOI devices. STAG2 was a robust, surface-potential based compact model, employing closed-form equations to minimise simulation times for large circuits. It was able to simulate circuits in DC, small signal, and transient modes, and particular care was taken to ensure that convergence problems were kept to a minimum. In this thesis, the ongoing development of the STAG model, culminating in the release of a new version, STAG3, is described. STAG3 is intended to make the STAG model applicable to process technologies down to 100nm. To this end, a number of major model improvements were undertaken, including: a new core surface potential model, new vertical and lateral field mobility models, quantum mechanical models, the ability to model non-uniform vertical doping profiles, and other miscellaneous effects relevant to deep submicron devices such as polysilicon depletion, velocity overshoot, and the reverse short channel effect.As with the previous versions of STAG, emphasis has been placed on ensuring that model equations are numerically robust, as well as closed-form wherever possible, in order to minimise convergence problems and circuit simulation times. The STAG3 model has been evaluated with devices manufactured in PD-SOI technologies down to 0.25?m, and was found to give good matching to experimental data across a range of device sizes and biases, whilst requiring only a single set of model parameters

    Nano-scale TG-FinFET: Simulation and Analysis

    Get PDF
    Transistor has been designed and fabricated in the same way since its invention more than four decades ago enabling exponential shrinking in the channel length. However, hitting fundamental limits imposed the need for introducing disruptive technology to take over. FinFET - 3-D transistor - has been emerged as the first successor to MOSFET to continue the technology scaling roadmap. In this thesis, scaling of nano-meter FinFET has been investigated on both the device and circuit levels. The studies, primarily, consider FinFET in its tri-gate (TG) structure. On the device level, first, the main TCAD models used in simulating electron transport are benchmarked against the most accurate results on the semi-classical level using Monte Carlo techniques. Different models and modifications are investigated in a trial to extend one of the conventional models to the nano-scale simulations. Second, a numerical study for scaling TG-FinFET according to the most recent International Technology Roadmap of Semiconductors is carried out by means of quantum corrected 3-D Monte Carlo simulations in the ballistic and quasi-ballistic regimes, to assess its ultimate performance and scaling behavior for the next generations. Ballisticity ratio (BR) is extracted and discussed over different channel lengths. The electron velocity along the channel is analyzed showing the physical significance of the off-equilibrium transport with scaling the channel length. On the circuit level, first, the impact of FinFET scaling on basic circuit blocks is investigated based on the PTM models. 256-bit (6T) SRAM is evaluated for channel lengths of 20nm down to 7nm showing the scaling trends of basic performance metrics. In addition, the impact of VT variations on the delay, power, and stability is reported considering die-to-die variations. Second, we move to another peer-technology which is 28nm FD-SOI as a comparative study, keeping the SRAM cell as the test block, more advanced study is carried out considering the cellñ€˜s stability and the evolution from dynamic to static metrics

    Systematic Comparison of HF CMOS Transconductors

    Get PDF
    Transconductors are commonly used as active elements in high-frequency (HF) filters, amplifiers, mixers, and oscillators. This paper reviews transconductor design by focusing on the V-I kernel that determines the key transconductor properties. Based on bandwidth considerations, simple V-I kernels with few or no internal nodes are preferred. In a systematic way, virtually all simple kernels published in literature are generated. This is done in two steps: 1) basic 3-terminal transconductors are covered and 2) then five different techniques to combine two of them in a composite V-I kernel. In order to compare transconductors in a fair way, a normalized signal-to-noise ratio (NSNR) is defined. The basic V-I kernels and the five classes of composite V-I kernels are then compared, leading to insight in the key mechanisms that affect NSNR. Symbolic equations are derived to estimate NSNR, while simulations with more advanced MOSFET models verify the results. The results show a strong tradeoff between NSNR and transconductance tuning range. Resistively generated MOSFETs render the best NSNR results and are robust for future technology developments

    Optimization of CMOS at Deep Cryogenic Temperatures

    Get PDF
    Cryogenic CMOS is a sought-out technology because of its applications to fields like quantum computing and deep space exploration. Though slight advancements have been made within the field of cryogenic CMOS technology, there persists critical challenges that need to resolve to further advance the field. Hence, there is a need to solve challenges like understanding the undesirable effects due to the device physics at cryogenic temperatures such as high threshold voltage, kink-effects, abnormal subthreshold swing etc. and developing reliable circuit models because many rely on analytical modeling. The research models a NMOS ON-current and subthreshold slope at temperatures of 300K and 4K using Technology Computer-Aided Design (TCAD) by applying a single set of calibrated parameters. Additionally, detailing a proposed trap distribution model to reproduce abnormal subthreshold slope observed from 4K to 300K. The research also achieves to introduce an electron and hole mobility model for a wide temperature range since there has not been a unified model developed for silicon carriers from 4K to 300K. Lastly, the research aims to optimize MOSFETs at deep cryogenic temperatures by applying the calibrated parameters

    Hot carrier degradation in deep submicron n-MOS technologies

    Get PDF
    With the aggressive scaling of MOS devices hot carrier degradation continues to be a major reliability concern. The LDD technologies, which have been used to minimise the hot carrier damage in MOS devices, suffer from the spacer damage causing the drain series resistance degradation, along with the channel mobility degradation. Therefore, in order to optimise the performance and reliability of these technologies it is necessary to quantify the roles of spacer and channel damages in determining their degradation behaviour. In this thesis the hot carrier degradation behaviour of different generations of graded drain (lightly doped, mildly doped and highly doped) n-MOS technologies, designed for 5V, 3V and 2V operation is investigated. The stress time beginning from microseconds is investigated to study how the damage initiates and evolves over time. A technology dependent two-stage degradation behaviour in the measured transconductance with an early stage deviating from conventionally observed power law behaviour is reported. A methodology based on conventional extraction procedure using the L-array method is first developed to analyse the drain series resistance and the mobility degradation. For 5V technologies the analysis of the damage using this methodology shows a two-stage drain series resistance degradation with early stage lasting about lOOms. However, it is seen that the conventional series resistance and mobility degradation methodology fails to satisfactorily predict degradation behaviour of 3V and 2V technologies, resulting in unphysical decreasing extracted series resistance. It is shown that after the hot carrier stress a change in the universal mobility behaviour for channel lengths approaching quarter micron regime has a significant effect on the parameter extraction. A modified universal mobility model incorporating the effect of the interface charge is developed using the FN stress experiments. A new generalised extraction methodology modelling hot carrier stressed device as series combination of undamaged and damaged channel regions, along with the series source drain resistance is developed, incorporating the modified universal model in the damaged channel region. The new methodology has the advantage of being single device based and serves as an effective tool in evaluating. the roles of series resistance and mobility degradations for technology qualification. This is especially true for the deep submicron regime where the conventional extraction procedures are not applicable. Further, the new extraction method has the potential of being integrated into commercial device simulation tools, to accurately analyse the device degradation behaviour in deep submicron regime

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Statistical compact model strategies for nano CMOS transistors subject of atomic scale variability

    Get PDF
    One of the major limiting factors of the CMOS device, circuit and system simulation in sub 100nm regimes is the statistical variability introduced by the discreteness of charge and granularity of matter. The statistical variability cannot be eliminated by tuning the layout or by tightening fabrication process control. Since the compact models are the key bridge between technology and design, it is necessary to transfer reliably the MOSFET statistical variability information into compact models to facilitate variability aware design practice. The aim of this project is the development of a statistical extraction methodology essential to capture statistical variability with optimum set of parameters particularly in industry standard compact model BSIM. This task is accomplished by using a detailed study on the sensitivity analysis of the transistor current in respect to key parameters in compact model in combination with error analysis of the fitted Id-Vg characteristics. The key point in the developed direct statistical compact model strategy is that the impacts of statistical variability can be captured in device characteristics by tuning a limited number of parameters and keeping the values for remaining major set equal to their default values obtained from the “uniform” MOSFET compact model extraction. However, the statistical compact model extraction strategies will accurately represent the distribution and correlation of the electrical MOSFET figures of merit. Statistical compact model parameters are generated using statistical parameter generation techniques such as uncorrelated parameter distributions, principal component analysis and nonlinear power method. The accuracy of these methods is evaluated in comparison with the results obtained from ‘atomistic’ simulations. The impact of the correlations in the compact model parameters has been analyzed along with the corresponding transistor figures of merit. The accuracy of the circuit simulations with different statistical compact model libraries has been studied. Moreover, the impact of the MOSFET width/length on the statistical trend of the optimum set of statistical compact model parameters and electrical figures of merit has been analyzed with two methods to capture geometry dependencies in proposed statistical models
    • 

    corecore