212 research outputs found

    Review of robotic technology for keyhole transcranial stereotactic neurosurgery

    Get PDF
    The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.This work has been partially financed by the NETT Project (FP7-PEOPLE-2011-ITN-289146), ACTIVE Project (FP7-ICT-2009-6-270460), and FCT PhD grant (ref. SFRH/BD/86499/2012)

    Navigation with Local Sensors in Surgical Robotics

    Get PDF

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    The beginning of a new era in bone surgery Effectiveness and clinical application of a cold-ablation and robot-guided laser osteotome

    Get PDF
    Most industrial laser applications utilize computer and robot assistance, for guidance, safety, repeatability, and precision. For industrial applications, the increase in throughput and the processing speed are in the foreground. Nevertheless, these tools cannot just be transferred into clinical and surgical use because the focus in surgical interventions is on the exact implementation of a unique plan. The patient, as an inaccurately defined workpiece, with its individual anatomy and pathology, ultimately needs a single lot planning. Nowadays, medical laser systems are hand driven. The possibility of working precision, as used in industry lasers, is not exhausted. Therefore, medical laser beams have to be coupled to robot guidance. But due to the over-size of commercially available tools, efficient and ergonomic work in an operating room is impossible. Integration of the systems such as the laser source, and the robot arm are needed. Another key issue for the accuracy of the robotic arm is the inclusion of a tracking system. All these issues were encountered developing CARLO®: a Cold-Ablation and Robot-guided Laser Osteotome. This PhD thesis is divided in three parts: - an in-vivo study in sheep, - an in-vitro / wetlab study on human cadavers, and - a theoretical-experimental study to evaluate biomechanical changes in different osteotomy pattern. To test the applicability of the system in an operation theatre similar environment, an in-vivo animal trial was performed. Additionally, we wanted to demonstrate that bone healing after laser osteotomy is not impaired compared to the standard tool the piezo-osteotome. In terms of new mineralized bone formation, histological and micro-CT analysis showed clearly a higher tendency towards the acceleration of the healing process in the laser group. Additionally, no signs of bone necrosis were seen. In addition to the pure functioning of the device, the applicability in the clinic is important for technology to prevail. Therefore, dummy tests for the ergonomics and cadaver tests for the simulation of "real" operations in the cranio-maxillofacial field were performed. Wetlab tests were conducted on human cadavers where different macro-retentive osteotomy patterns were performed. It could be demonstrated that our prototype shows advantages over the current state of the art cutting tools, e.g. reduced bone loss, precise and real-time navigated execution of predefined geometries of freely selected osteotomy patterns. This advantage can be implemented in another indication of our prototype in the cranio-maxillofacial field: in craniosynostosis surgery. We performed a study using finite element analysis to simulate incomplete osteotomies on the inner side of the bone flap to facilitate the re-shaping (skull molding). This biomechanical analysis intended to create basic knowledge in terms of the best stress vs. force relation to obtain the largest projected bone surface. Moreover, a human multicenter study is ready to start for the clinical introduction of the cold-ablation and robot-guided laser osteotome and to gain more experience and information for future work

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    Computer-Assisted Planning and Robotics in Epilepsy Surgery

    Get PDF
    Epilepsy is a severe and devastating condition that affects ~1% of the population. Around 30% of these patients are drug-refractory. Epilepsy surgery may provide a cure in selected individuals with drug-resistant focal epilepsy if the epileptogenic zone can be identified and safely resected or ablated. Stereoelectroencephalography (SEEG) is a diagnostic procedure that is performed to aid in the delineation of the seizure onset zone when non-invasive investigations are not sufficiently informative or discordant. Utilizing a multi-modal imaging platform, a novel computer-assisted planning (CAP) algorithm was adapted, applied and clinically validated for optimizing safe SEEG trajectory planning. In an initial retrospective validation study, 13 patients with 116 electrodes were enrolled and safety parameters between automated CAP trajectories and expert manual plans were compared. The automated CAP trajectories returned statistically significant improvements in all of the compared clinical metrics including overall risk score (CAP 0.57 +/- 0.39 (mean +/- SD) and manual 1.00 +/- 0.60, p < 0.001). Assessment of the inter-rater variability revealed there was no difference in external expert surgeon ratings. Both manual and CAP electrodes were rated as feasible in 42.8% (42/98) of cases. CAP was able to provide feasible electrodes in 19.4% (19/98), whereas manual planning was able to generate a feasible electrode in 26.5% (26/98) when the alternative generation method was not feasible. Based on the encouraging results from the retrospective analysis a prospective validation study including an additional 125 electrodes in 13 patients was then undertaken to compare CAP to expert manual plans from two neurosurgeons. The manual plans were performed separately and blindly from the CAP. Computer-generated trajectories were found to carry lower risks scores (absolute difference of 0.04 mm (95% CI = -0.42-0.01), p = 0.04) and were subsequently implanted in all cases without complication. The pipeline has been fully integrated into the clinical service and has now replaced manual SEEG planning at our institution. Further efforts were then focused on the distillation of optimal entry and target points for common SEEG trajectories and applying machine learning methods to develop an active learning algorithm to adapt to individual surgeon preferences. Thirty-two patients were prospectively enrolled in the study. The first 12 patients underwent prospective CAP planning and implantation following the pipeline outlined in the previous study. These patients were used as a training set and all of the 108 electrodes after successful implantation were normalized to atlas space to generate ‘spatial priors’, using a K-Nearest Neighbour (K-NN) classifier. A subsequent test set of 20 patients (210 electrodes) were then used to prospectively validate the spatial priors. From the test set, 78% (123/157) of the implanted trajectories passed through both the entry and target spatial priors defined from the training set. To improve the generalizability of the spatial priors to other neurosurgical centres undertaking SEEG and to take into account the potential for changing institutional practices, an active learning algorithm was implemented. The K-NN classifier was shown to dynamically learn and refine the spatial priors. The progressive refinement of CAP SEEG planning outlined in this and previous studies has culminated in an algorithm that not only optimizes the surgical heuristics and risk scores related to SEEG planning but can also learn from previous experience. Overall, safe and feasible trajectory schema were returning in 30% of the time required for manual SEEG planning. Computer-assisted planning was then applied to optimize laser interstitial thermal therapy (LITT) trajectory planning, which is a minimally invasive alternative to open mesial temporal resections, focal lesion ablation and anterior 2/3 corpus callosotomy. We describe and validate the first CAP algorithm for mesial temporal LITT ablations for epilepsy treatment. Twenty-five patients that had previously undergone LITT ablations at a single institution and with a median follow up of 2 years were included. Trajectory parameters for the CAP algorithm were derived from expert consensus to maximize distance from vasculature and ablation of the amygdalohippocampal complex, minimize collateral damage to adjacent brain structures whilst avoiding transgression of the ventricles and sulci. Trajectory parameters were also optimized to reduce the drilling angle to the skull and overall catheter length. Simulated cavities attributable to the CAP trajectories were calculated using a 5-15 mm ablation diameter. In comparison to manually planned and implemented LITT trajectories,CAP resulted in a significant increase in the percentage ablation of the amygdalohippocampal complex (manual 57.82 +/- 15.05% (mean +/- S.D.) and unablated medial hippocampal head depth (manual 4.45 +/- 1.58 mm (mean +/- S.D.), CAP 1.19 +/- 1.37 (mean +/- S.D.), p = 0.0001). As LITT ablation of the mesial temporal structures is a novel procedure there are no established standards for trajectory planning. A data-driven machine learning approach was, therefore, applied to identify hitherto unknown CAP trajectory parameter combinations. All possible combinations of planning parameters were calculated culminating in 720 unique combinations per patient. Linear regression and random forest machine learning algorithms were trained on half of the data set (3800 trajectories) and tested on the remaining unseen trajectories (3800 trajectories). The linear regression and random forest methods returned good predictive accuracies with both returning Pearson correlations of ρ = 0.7 and root mean squared errors of 0.13 and 0.12 respectively. The machine learning algorithm revealed that the optimal entry points were centred over the junction of the inferior occipital, middle temporal and middle occipital gyri. The optimal target points were anterior and medial translations of the centre of the amygdala. A large multicenter external validation study of 95 patients was then undertaken comparing the manually planned and implemented trajectories, CAP trajectories targeting the centre of the amygdala, the CAP parameters derived from expert consensus and the CAP trajectories utilizing the machine learning derived parameters. Three external blinded expert surgeons were then selected to undertake feasibility ratings and preference rankings of the trajectories. CAP generated trajectories result in a significant improvement in many of the planning metrics, notably the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.2 (mean +/- S.D.), p<0.000) and overall ablation of the amygdala (manual 45.3 +/- 22.2 % (mean +/- S.D.), CAP 64.2 +/- 20 % (mean +/- S.D.), p<0.000). Blinded external feasibility ratings revealed that manual trajectories were less preferable than CAP planned trajectories with an estimated probability of being ranked 4th (lowest) of 0.62. Traditional open corpus callosotomy requires a midline craniotomy, interhemispheric dissection and disconnection of the rostrum, genu and body of the corpus callosum. In cases where drop attacks persist a completion corpus callosotomy to disrupt the remaining fibres in the splenium is then performed. The emergence of LITT technology has raised the possibility of being able to undertake this procedure in a minimally invasive fashion and without the need for a craniotomy using two or three individual trajectories. Early case series have shown LITT anterior two-thirds corpus callosotomy to be safe and efficacious. Whole-brain probabilistic tractography connectomes were generated utilizing 3-Tesla multi-shell imaging data and constrained spherical deconvolution (CSD). Two independent blinded expert neurosurgeons with experience of performing the procedure using LITT then planned the trajectories in each patient following their current clinical practice. Automated trajectories returned a significant reduction in the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.1 (mean +/- S.D.), p<0.000). Finally, we investigate the different methods of surgical implantation for SEEG electrodes. As an initial study, a systematic review and meta-analysis of the literature to date were performed. This revealed a wide variety of implantation methods including traditional frame-based, frameless, robotic and custom-3D printed jigs were being used in clinical practice. Of concern, all comparative reports from institutions that had changed from one implantation method to another, such as following the introduction of robotic systems, did not undertake parallel-group comparisons. This suggests that patients may have been exposed to risks associated with learning curves and potential harms related to the new device until the efficacy was known. A pragmatic randomized control trial of a novel non-CE marked robotic trajectory guidance system (iSYS1) was then devised. Before clinical implantations began a series of pre-clinical investigations utilizing 3D printed phantom heads from previously implanted patients was performed to provide pilot data and also assess the surgical learning curve. The surgeons had comparatively little clinical experience with the new robotic device which replicates the introduction of such novel technologies to clinical practice. The study confirmed that the learning curve with the iSYS1 devices was minimal and the accuracies and workflow were similar to the conventional manual method. The randomized control trial represents the first of its kind for stereotactic neurosurgical procedures. Thirty-two patients were enrolled with 16 patients randomized to the iSYS1 intervention arm and 16 patients to the manual implantation arm. The intervention allocation was concealed from the patients. The surgical and research team could be not blinded. Trial management, independent data monitoring and trial steering committees were convened at four points doing the trial (after every 8 patients implanted). Based on the high level of accuracy required for both methods, the main distinguishing factor would be the time to achieve the alignment to the prespecified trajectory. The primary outcome for comparison, therefore, was the time for individual SEEG electrode implantation. Secondary outcomes included the implantation accuracy derived from the post-operative CT scan, infection, intracranial haemorrhage and neurological deficit rates. Overall, 32 patients (328 electrodes) completed the trial (16 in each intervention arm) and the baseline demographics were broadly similar between the two groups. The time for individual electrode implantation was significantly less with the iSYS1 device (median of 3.36 (95% CI 5.72 to 7.07) than for the PAD group (median of 9.06 minutes (95% CI 8.16 to 10.06), p=0.0001). Target point accuracy was significantly greater with the PAD (median of 1.58 mm (95% CI 1.38 to 1.82) compared to the iSYS1 (median of 1.16 mm (95% CI 1.01 to 1.33), p=0.004). The difference between the target point accuracies are not clinically significant for SEEG but may have implications for procedures such as deep brain stimulation that require higher placement accuracy. All of the electrodes achieved their respective intended anatomical targets. In 12 of 16 patients following robotic implantations, and 10 of 16 following manual PAD implantations a seizure onset zone was identified and resection recommended. The aforementioned systematic review and meta-analysis were updated to include additional studies published during the trial duration. In this context, the iSYS1 device entry and target point accuracies were similar to those reported in other published studies of robotic devices including the ROSA, Neuromate and iSYS1. The PAD accuracies, however, outperformed the previously published results for other frameless stereotaxy methods. In conclusion, the presented studies report the integration and validation of a complex clinical decision support software into the clinical neurosurgical workflow for SEEG planning. The stereotactic planning platform was further refined by integrating machine learning techniques and also extended towards optimisation of LITT trajectories for ablation of mesial temporal structures and corpus callosotomy. The platform was then used to seamlessly integrate with a novel trajectory planning software to effectively and safely guide the implantation of the SEEG electrodes. Through a single-blinded randomised control trial, the ISYS1 device was shown to reduce the time taken for individual electrode insertion. Taken together, this work presents and validates the first fully integrated stereotactic trajectory planning platform that can be used for both SEEG and LITT trajectory planning followed by surgical implantation through the use of a novel trajectory guidance system

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Current and Future Advances in Surgical Therapy for Pituitary Adenoma

    Get PDF
    The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science approach, utilising machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, early detection of individuals at risk of complications and prediction of treatment failure through neural networks of multimodal datasets will support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions. Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future
    corecore