1,820 research outputs found

    Compression of Spectral Images

    Get PDF

    MIDAS prototype Multispectral Interactive Digital Analysis System for large area earth resources surveys. Volume 2: Charge coupled device investigation

    Get PDF
    MIDAS is a third-generation, fast, low cost, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensors. MIDAS, for example, can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The need for advanced onboard spacecraft processing of remotely sensed data is stated and approaches to this problem are described which are feasible through the use of charge coupled devices. Tentative mechanizations for the required processing operations are given in large block form. These initial designs can serve as a guide to circuit/system designers

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Data-efficient methods applied to general spectral image capture

    Get PDF
    Commercialization of spectral imaging for color reproduction will require low bandwidth but highly accurate spectral image acquisition systems. Self-adapting systems are proposed as potential solutions. Such systems perform spectral content analysis on an encountered scene, reacting to the analysis by configuring efficient high quality spectral reconstruction. An experiment is reported comparing scene-derived spectral estimation transforms to static global transforms in multi-channel imaging simulations. For noisefree simulations, the adaptive approach showed clear benefit in terms of colorimetric and spectral statistics. When noise was added, the adaptive method continued to be superior in terms of spectral evaluations, but colorimetric degradation for the adaptive approach exceeded that of the static. This provided additional evidence that spectral reconstruction methods should reference psychometrics as an integral part of spectral error management

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft
    • …
    corecore