144 research outputs found

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    HEVC-based 3D holoscopic video coding using self-similarity compensated prediction

    Get PDF
    Holoscopic imaging, also known as integral, light field, and plenoptic imaging, is an appealing technology for glassless 3D video systems, which has recently emerged as a prospective candidate for future image and video applications, such as 3D television. However, to successfully introduce 3D holoscopic video applications into the market, adequate coding tools that can efficiently handle 3D holoscopic video are necessary. In this context, this paper discusses the requirements and challenges for 3D holoscopic video coding, and presents an efficient 3D holoscopic coding scheme based on High Efficiency Video Coding (HEVC). The proposed 3D holoscopic codec makes use of the self-similarity (SS) compensated prediction concept to efficiently explore the inherent correlation of the 3D holoscopic content in Intra- and Inter-coded frames, as well as a novel vector prediction scheme to take advantage of the peculiar characteristics of the SS prediction data. Extensive experiments were conducted, and have shown that the proposed solution is able to outperform HEVC as well as other coding solutions proposed in the literature. Moreover, a consistently better performance is also observed for a set of different quality metrics proposed in the literature for 3D holoscopic content, as well as for the visual quality of views synthesized from decompressed 3D holoscopic content.info:eu-repo/semantics/submittedVersio

    DPCM-based edge prediction for lossless screen content coding in HEVC

    Get PDF
    Screen content sequences are ubiquitous type of video data in numerous multimedia applications like video conferencing, remote education, and cloud gaming. These sequences are characterized for depicting a mix of computer generated graphics, text, and camera-captured material. Such a mix poses several challenges, as the content usually depicts multiple strong discontinuities, which are hard to encode using current techniques. Differential pulse code modulation (DPCM)-based intra-prediction has shown to improve coding efficiency for these sequences. In this paper we propose sample-based edge and angular prediction (SEAP), a collection of DPCM-based intra-prediction modes to improve lossless coding of screen content. SEAP is aimed at accurately predicting regions depicting not only camera-captured material, but also those depicting strong edges. It incorporates modes that allow selecting the best predictor for each pixel individually based on the characteristics of the causal neighborhood of the target pixel. We incorporate SEAP into HEVC intra-prediction. Evaluation results on various screen content sequences show the advantages of SEAP over other DPCM-based approaches, with bit-rate reductions of up to 19.56% compared to standardized RDPCM. When used in conjunction with the coding tools of the screen content coding extensions, SEAP provides bit-rate reductions of up to 8.63% compared to RDPCM

    Light field image coding with jointly estimated self-similarity bi-prediction

    Get PDF
    This paper proposes an efficient light field image coding (LFC) solution based on High Efficiency Video Coding (HEVC) and a novel Bi-prediction Self-Similarity (Bi-SS) estimation and compensation approach to efficiently explore the inherent non-local spatial correlation of this type of content, where two predictor blocks are jointly estimated from the same search window by using a locally optimal rate constrained algorithm. Moreover, a theoretical analysis of the proposed Bi-SS prediction is also presented, which shows that other non-local spatial prediction schemes proposed in literature are suboptimal in terms of Rate-Distortion (RD) performance and, for this reason, can be considered as restricted cases of the jointly estimated Bi-SS solution proposed here. These theoretical insights are shown to be consistent with the presented experimental results, and demonstrate that the proposed LFC scheme is able to outperform the benchmark solutions with significant gains with respect to HEVC (with up to 61.1% of bit savings) and other state-of-the-art LFC solutions in the literature (with up 16.9% of bit savings).info:eu-repo/semantics/acceptedVersio

    Piecewise mapping in HEVC lossless intra-prediction coding

    Get PDF
    The lossless intra-prediction coding modality of the High Efficiency Video Coding (HEVC) standard provides high coding performance while following frame-by-frame basis access to the coded data. This is of interest in many professional applications such as medical imaging, automotive vision and digital preservation in libraries and archives. Various improvements to lossless intra-prediction coding have been proposed recently, most of them based on sample-wise prediction using Differential Pulse Code Modulation (DPCM). Other recent proposals aim at further reducing the energy of intra-predicted residual blocks. However, the energy reduction achieved is frequently minimal due to the difficulty of correctly predicting the sign and magnitude of residual values. In this paper, we pursue a novel approach to this energy-reduction problem using piecewise mapping (pwm) functions. Specifically, we analyze the range of values in residual blocks and apply accordingly a pwm function to map specific residual values to unique lower values. We encode appropriate parameters associated with the pwm functions at the encoder, so that the corresponding inverse pwm functions at the decoder can map values back to the same residual values. These residual values are then used to reconstruct the original signal. This mapping is, therefore, reversible and introduces no losses. We evaluate the pwm functions on 4×4 residual blocks computed after DPCM-based prediction for lossless coding of a variety of camera-captured and screen content sequences. Evaluation results show that the pwm functions can attain maximum bit-rate reductions of 5.54% and 28.33% for screen content material compared to DPCM-based and block-wise intra-prediction, respectively. Compared to IntraBlock Copy, piecewise mapping can attain maximum bit-rate reductions of 11.48% for camera-captured material

    Analysis of the perceptual quality performance of different HEVC coding tools

    Get PDF
    Each new video encoding standard includes encoding techniques that aim to improve the performance and quality of the previous standards. During the development of these techniques, PSNR was used as the main distortion metric. However, the PSNR metric does not consider the subjectivity of the human visual system, so that the performance of some coding tools is questionable from the perceptual point of view. To further explore this point, we have developed a detailed study about the perceptual sensibility of different HEVC video coding tools. In order to perform this study, we used some popular objective quality assessment metrics to measure the perceptual response of every single coding tool. The conclusion of this work will help to determine the set of HEVC coding tools that provides, in general, the best perceptual response
    corecore