1,236 research outputs found

    Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    Get PDF
    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed

    Flight Technology Improvement

    Get PDF
    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems

    Design and fabrication of a high temperature leading edge heating array, phase 1

    Get PDF
    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module

    Achieving 0.1 K absolute calibration accuracy for high spectral resolution infrared and far infrared climate benchmark measurements

    Get PDF
    Mesurer le rayonnement infrarouge de manière résolue spectralement à partir de satellites avec une très haute précision radiométrique constitue un besoin critique pour les futures missions de référence climatique. Pour les spectres de rayonnement infrarouge, il a été déterminé qu'une précision de mesure exprimée comme une erreur de température de brillance inférieure à 0,1 K est nécessaire pour la détection de tendances au-delà de la variabilité naturelle des signatures climatiques sur une décennie. Le “Space Science and Engineering Center” de l'Université du Wisconsin (UW-SSEC), avec le soutien financier du programme d'incubateur d'instrument de la NASA, a développé “l'Absolute Radiance Interferometer” (ARI). L' ARI est conçu pour répondre aux exigences nécessaires afin de réaliser des mesures de radiance absolue résolues spectralement à partir de l’espace, dans le cadre d’une mission de référence pour suivre les tendances du climat. Le défi dans le développement de capteurs infrarouges pour une telle mission est d'atteindre cette haute précision avec un design qui peut être qualifié pour le vol spatial, qui a une longue durée de vie et qui est relativement petit, simple et abordable. L’approche pour la conception de l’ARI fait usage de composants ayant un historique de vol spatial qui sont combinés en un ensemble fonctionnel pour tester les performances détaillées. La simplicité requise est réalisable en raison des grandes différences dans les exigences d'échantillonnage et de bruit par rapport à celles des sondeurs infrarouges de télédétection typiques pour la recherche ou les déploiements opérationnels pour la météo. L’aspect original de cet instrument et de cette thèse est donc la démonstration de l’atteinte de la haute précision radiométrique. Le but de cet effort est de démontrer avec succès la possibilité de telles mesures dans des conditions de laboratoire et de vide, sur un sous-ensemble de la gamme des températures de brillance attendues en orbite. Des progrès dans la compréhension de aspects instrumentaux des spectromètres ont été accomplis en lien avec la poursuite de cet objectif et sont également rapportés dans cette thèse.Spectrally resolved infrared radiances measured from orbit with extremely high absolute accuracy constitute a critical observation for future climate benchmark missions. For the infrared radiance spectra, it has been determined that a measurement accuracy, expressed as an equivalent brightness temperature error, of 0.1 K confirmed on orbit is required for signal detection above natural variability for decadal climate signatures. The University of Wisconsin Space Science and Engineering Center (UW-SSEC), with funding support from the NASA Instrument Incubator Program (IIP), developed the Absolute Radiance Interferometer (ARI). The ARI is designed to meet the uncertainty requirements needed to establish a spectrally resolved thermal infrared climate benchmark measurements from space. The challenge in the infrared sensor development for a climate benchmark measurement mission is to achieve this ultra-high accuracy with a design that can be flight qualified, has long design life, and is reasonably small, simple, and affordable. In this area, our design approach for the Absolute Radiance Interferometer (ARI) made use of components with strong spaceflight heritage (direct analogs with high TRL) combined into a functional package for detailed performance testing. The required simplicity is achievable due to the large differences in the sampling and noise requirements for the benchmark climate measurement from those of the typical remote sensing infrared sounders for weather research or operations. The new aspect of the interferometer development is the ultra high absolute accuracy sought, and is the subject of this thesis. The goal of this effort is to successfully demonstrate this measurement capability under laboratory and vacuum conditions, over a subset of the range of equivalent earth scene brightness temperatures expected on-orbit. Advances in instrumental aspects have been achieved in the pursuit of this goal

    The Mars Environmental Dynamics Analyzer, MEDA: a suite of environmental sensors for the Mars 2020 mission

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Space science reviews. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11214-021-00816-9NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ~1.5 m and ~0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.Peer ReviewedPostprint (published version

    The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission

    Get PDF
    86 pags., 49 figs., 24 tabs.NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.This work has been funded by the Spanish Ministry of Economy and Competitiveness, through the projects No. ESP2014-54256-C4-1-R (also -2-R, -3-R and -4-R) and AYA2015-65041-P; Ministry of Science, Innovation and Universities, projects No. ESP2016-79612-C3-1-R (also -2-R and -3-R), ESP2016-80320-C2-1-R, RTI2018-098728-B-C31 (also -C32 and -C33) and RTI2018-099825-B-C31; Instituto Nacional de Técnica Aeroespacial; Ministry of Science and Innovation’s Centre for the Development of Industrial Technology; Grupos Gobierno Vasco IT1366-19; and European Research Council Consolidator Grant no 818602. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development program within the Space Technology Mission Directorate and from the Human Exploration and Operations Directorate

    Limb radiance inversion radiometer

    Get PDF
    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included

    Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    Get PDF
    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities

    Infrared radiometric stress instrumentation application range study

    Get PDF
    Infrared radiometric stress instrumentation system for estimating detectable stress measurement
    corecore