723 research outputs found

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Recovery Time Considerations in Real-Time Systems Employing Software Fault Tolerance

    Get PDF
    Safety-critical real-time systems like modern automobiles with advanced driving-assist features must employ redundancy for crucial software tasks to tolerate permanent crash faults. This redundancy can be achieved by using techniques like active replication or the primary-backup approach. In such systems, the recovery time which is the amount of time it takes for a redundant task to take over execution on the failure of a primary task becomes a very important design parameter. The recovery time for a given task depends on various factors like task allocation, primary and redundant task priorities, system load and the scheduling policy. Each task can also have a different recovery time requirement (RTR). For example, in automobiles with automated driving features, safety-critical tasks like perception and steering control have strict RTRs, whereas such requirements are more relaxed in the case of tasks like heating control and mission planning. In this paper, we analyze the recovery time for software tasks in a real-time system employing Rate-Monotonic Scheduling (RMS). We derive bounds on the recovery times for different redundant task options and propose techniques to determine the redundant-task type for a task to satisfy its RTR. We also address the fault-tolerant task allocation problem, with the additional constraint of satisfying the RTR of each task in the system. Given that the problem of assigning tasks to processors is a well-known NP-hard bin-packing problem we propose computationally-efficient heuristics to find a feasible allocation of tasks and their redundant copies. We also apply the simulated annealing method to the fault-tolerant task allocation problem with RTR constraints and compare against our heuristics

    A Game-Theoretic Approach to Strategic Resource Allocation Mechanisms in Edge and Fog Computing

    Get PDF
    With the rapid growth of Internet of Things (IoT), cloud-centric application management raises questions related to quality of service for real-time applications. Fog and edge computing (FEC) provide a complement to the cloud by filling the gap between cloud and IoT. Resource management on multiple resources from distributed and administrative FEC nodes is a key challenge to ensure the quality of end-user’s experience. To improve resource utilisation and system performance, researchers have been proposed many fair allocation mechanisms for resource management. Dominant Resource Fairness (DRF), a resource allocation policy for multiple resource types, meets most of the required fair allocation characteristics. However, DRF is suitable for centralised resource allocation without considering the effects (or feedbacks) of large-scale distributed environments like multi-controller software defined networking (SDN). Nash bargaining from micro-economic theory or competitive equilibrium equal incomes (CEEI) are well suited to solving dynamic optimisation problems proposing to ‘proportionately’ share resources among distributed participants. Although CEEI’s decentralised policy guarantees load balancing for performance isolation, they are not faultproof for computation offloading. The thesis aims to propose a hybrid and fair allocation mechanism for rejuvenation of decentralised SDN controller deployment. We apply multi-agent reinforcement learning (MARL) with robustness against adversarial controllers to enable efficient priority scheduling for FEC. Motivated by software cybernetics and homeostasis, weighted DRF is generalised by applying the principles of feedback (positive or/and negative network effects) in reverse game theory (GT) to design hybrid scheduling schemes for joint multi-resource and multitask offloading/forwarding in FEC environments. In the first piece of study, monotonic scheduling for joint offloading at the federated edge is addressed by proposing truthful mechanism (algorithmic) to neutralise harmful negative and positive distributive bargain externalities respectively. The IP-DRF scheme is a MARL approach applying partition form game (PFG) to guarantee second-best Pareto optimality viii | P a g e (SBPO) in allocation of multi-resources from deterministic policy in both population and resource non-monotonicity settings. In the second study, we propose DFog-DRF scheme to address truthful fog scheduling with bottleneck fairness in fault-probable wireless hierarchical networks by applying constrained coalition formation (CCF) games to implement MARL. The multi-objective optimisation problem for fog throughput maximisation is solved via a constraint dimensionality reduction methodology using fairness constraints for efficient gateway and low-level controller’s placement. For evaluation, we develop an agent-based framework to implement fair allocation policies in distributed data centre environments. In empirical results, the deterministic policy of IP-DRF scheme provides SBPO and reduces the average execution and turnaround time by 19% and 11.52% as compared to the Nash bargaining or CEEI deterministic policy for 57,445 cloudlets in population non-monotonic settings. The processing cost of tasks shows significant improvement (6.89% and 9.03% for fixed and variable pricing) for the resource non-monotonic setting - using 38,000 cloudlets. The DFog-DRF scheme when benchmarked against asset fair (MIP) policy shows superior performance (less than 1% in time complexity) for up to 30 FEC nodes. Furthermore, empirical results using 210 mobiles and 420 applications prove the efficacy of our hybrid scheduling scheme for hierarchical clustering considering latency and network usage for throughput maximisation.Abubakar Tafawa Balewa University, Bauchi (Tetfund, Nigeria

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper
    • …
    corecore