240 research outputs found

    Linking Remote Sensing with APSIM through Emulation and Bayesian Optimization to Improve Yield Prediction

    Get PDF
    The enormous increase in the volume of Earth Observations (EOs) has provided the scientific community with unprecedented temporal, spatial, and spectral information. However, this increase in the volume of EOs has not yet resulted in proportional progress with our ability to forecast agricultural systems. This study examines the applicability of EOs obtained from Sentinel-2 and Landsat-8 for constraining the APSIM-Maize model parameters. We leveraged leaf area index (LAI) retrieved from Sentinel-2 and Landsat-8 NDVI (Normalized Difference Vegetation Index) to constrain a series of APSIM-Maize model parameters in three different Bayesian multi-criteria optimization frameworks across 13 different calibration sites in the U.S. Midwest. The novelty of the current study lies in its approach in providing a mathematical framework to directly integrate EOs into process-based models for improved parameter estimation and system representation. Thus, a time variant sensitivity analysis was performed to identify the most influential parameters driving the LAI (Leaf Area Index) estimates in APSIM-Maize model. Then surrogate models were developed using random samples taken from the parameter space using Latin hypercube sampling to emulate APSIM’s behavior in simulating NDVI and LAI at all sites. Site-level, global and hierarchical Bayesian optimization models were then developed using the site-level emulators to simultaneously constrain all parameters and estimate the site to site variability in crop parameters. For within sample predictions, site-level optimization showed the largest predictive uncertainty around LAI and crop yield, whereas the global optimization showed the most constraint predictions for these variables. The lowest RMSE within sample yield prediction was found for hierarchical optimization scheme (1423 Kg ha−1) while the largest RMSE was found for site-level (1494 Kg ha−1). In out-of-sample predictions for within the spatio-temporal extent of the training sites, global optimization showed lower RMSE (1627 Kg ha−1) compared to the hierarchical approach (1822 Kg ha−1) across 90 independent sites in the U.S. Midwest. On comparison between these two optimization schemes across another 242 independent sites outside the spatio-temporal extent of the training sites, global optimization also showed substantially lower RMSE (1554 Kg ha−1) as compared to the hierarchical approach (2532 Kg ha−1). Overall, EOs demonstrated their real use case for constraining process-based crop models and showed comparable results to model calibration exercises using only field measurements

    Unlocking the benefits of spaceborne imaging spectroscopy for sustainable agriculture

    Get PDF
    With the Environmental Mapping and Analysis Program (EnMAP) mission, launched on April 1st 2022, new opportunities unfold for precision farming and agricultural monitoring. The recurring acquisition of spectrometric imagery from space, contiguously resolving the electromagnetic spectrum in the optical domain (400—2500 nm) within close narrow bands, provides unprecedented data about the interaction of radiation with biophysical and biochemical crop constituents. These interactions manifest in spectral reflectance, carrying important information about crop status and health. This information may be incorporated in agricultural management systems to support necessary efforts to maximize yields against the backdrop of an increased food demand by a growing world population. At the same time, it enables the effective optimization of fertilization and pest control to minimize environmental impacts of agriculture. Deriving biophysical and biochemical crop traits from hyperspectral reflectance thereby always relies on a model. These models are categorized into (1) parametric, (2) nonparametric, (3) physically-based, and (4) hybrid retrieval schemes. Parametric methods define an explicit parameterized expression, relating a number of spectral bands or derivates thereof with a crop trait of interest. Nonparametric methods comprise linear techniques, such as principal component analysis (PCA) which addresses collinearity issues between adjacent bands and enables compression of full spectral information into dimensionality reduced, maximal informative principal components (PCs). Nonparametric nonlinear methods, i.e., machine learning (ML) algorithms apply nonlinear transformations to imaging spectroscopy data and are therefore capable of capturing nonlinear relationships within the contained spectral features. Physically-based methods represent an umbrella term for radiative transfer models (RTMs) and related retrieval schemes, such as look-up-table (LUT) inversion. A simple, easily invertible and specific RTM is the Beer-Lambert law which may be used to directly infer plant water content. The most widely used general and invertible RTM is the one-dimensional canopy RTM PROSAIL, which is coupling the Leaf Optical Properties Spectra model PROSPECT and the canopy reflectance model 4SAIL: Scattering by Arbitrarily Inclined Leaves. Hybrid methods make use of synthetic data sets created by RTMs to calibrate parametric methods or to train nonparametric ML algorithms. Due to the ill-posed nature of RTM inversion, potentially unrealistic and redundant samples in a LUT need to be removed by either implementing physiological constraints or by applying active learning (AL) heuristics. This cumulative thesis presents three different hybrid approaches, demonstrated within three scientific research papers, to derive agricultural relevant crop traits from spectrometric imagery. In paper I the Beer-Lambert law is applied to directly infer the thickness of the optically active water layer (i.e., EWT) from the liquid water absorption feature at 970 nm. The model is calibrated with 50,000 PROSPECT spectra and validated over in situ data. Due to separate water content measurements of leaves, stalks, and fruits during the Munich-North-Isar (MNI) campaigns, findings indicate that depending on the crop type and its structure, different parts of the canopy are observed with optical sensors. For winter wheat, correlation between measured and modelled water content was most promising for ears and leaves, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26%, and in the case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These results led to the general recommendation to collect destructive area-based plant organ specific EWT measurements instead of the common practice to upscale leaf-based EWT measurements to canopy water content (CWC) by multiplication of the leaf area index (LAI). The developed and calibrated plant water retrieval (PWR) model proved to be transferable in space and time and is ready to be applied to upcoming EnMAP data and any other hyperspectral imagery. In paper II the parametric concept of spectral integral ratios (SIR) is introduced to retrieve leaf chlorophyll a and b content (Cab), leaf carotenoid content (Ccx) and leaf water content (Cw) simultaneously from imaging spectroscopy data in the wavelength range 460—1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The approach was validated over a physiologically constrained PROSAIL simulated database, considering natural Ccx-Cab relations and green peak locations. Validation on airborne spectrometric HyMAP data achieved satisfactory results for Cab (R2 = 0.84; RMSE = 9.06 ”g cm-2) and CWC (R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Mapping of the SIR results as multiband images (3-segment SIR) allows for an intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is applicable on satellite imaging spectroscopy data. In paper III a hybrid workflow is presented, combining RTM with ML for inferring crop carbon content (Carea) and aboveground dry and fresh biomass (AGBdry, AGBfresh). The concept involves the establishment of a PROSAIL training database, dimensionality reduction using PCA, optimization in the sampling domain using AL against the 4-year MNI campaign dataset, and training of Gaussian process regression (GPR) ML algorithms. Internal validation of the GPR-Carea and GPR-AGB models achieved R2 of 0.80 for Carea, and R2 of 0.80 and 0.71 for AGBdry and AGBfresh, respectively. Validation with an independent dataset, comprising airborne AVIRIS NG imagery (spectrally resampled to EnMAP) and in situ measurements, successfully demonstrated mapping capabilities for both bare and green fields and generated reliable estimates over winter wheat fields at low associated model uncertainties (< 40%). Overall, the proposed carbon and biomass models demonstrate a promising path toward the inference of these crucial variables over cultivated areas from upcoming spaceborne hyperspectral acquisitions, such as from EnMAP. As conclusions, the following important findings arise regarding parametric and nonparametric hybrid methods as well as in view of the importance of in situ data collection. (1) Uncertainties within the RTM PROSAIL should always be considered. A possible reduction of these uncertainties is thereby opposed to the invertibility of the model and its intended simplicity. (2) Both physiological constraints and AL heuristics should be applied to reduce unrealistic parameter combinations in a PROSAIL calibration or training database. (3) State-of-the-art hybrid ML approaches with the ability to provide uncertainty intervals are anticipated as most promising approach for solving inference problems from hyperspectral Earth observation data due to their synergistic use of RTMs and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. (4) Parametric hybrid approaches, due to their algorithmic transparency, enable deeper insights into fundamental physical limitations of optical remote sensing as compared to ML approaches. (5) Integration-based indices that make full use of available hyperspectral information may serve as physics-aware dimensionality reduced input for ML algorithms to either improve estimations or to serve as endmember for crop type discrimination when additional time series information is available. (6) The validation of quantitative model-based estimations is crucial to evaluate and improve their performance in terms of the underlying assumptions, model parameterizations, and input data. (7) In the face of soon-to-be-available EnMAP data, collection of in situ data for validation of retrieval methods should aim at high variability of measured crop types, high temporal variability over the whole growing season, as well as include area- and biomass-based destructive measurements instead of LAI-upscaled leaf measurements. Provided the perfect functionality of the payload instruments, the success of the EnMAP mission and the here presented methods depend critically on a low-noise, accurate atmospherically corrected reflectance product. High-level outputs of the retrieval methods presented in this thesis may be incorporated into agricultural decision support systems for fertilization and irrigation planning, yield estimation, or estimation of the soil carbon sequestration potential to enable a sustainable intensive agriculture in the future.Mit der am 1. April 2022 gestarteten Satellitenmission Environmental Mapping and Analysis Program (EnMAP) eröffnen sich neue Möglichkeiten fĂŒr die PrĂ€zisionslandwirtschaft und das landwirtschaftliche Monitoring. Die wiederkehrende Erfassung spektrometrischer Bilder aus dem Weltraum, welche das elektromagnetische Spektrum im optischen Bereich (400—2500 nm) innerhalb von engen, schmalen BĂ€ndern zusammenhĂ€ngend auflösen, liefert nie dagewesene Daten ĂŒber die Interaktionen von Strahlung und biophysikalischen und biochemischen Pflanzenbestandteilen. Diese Wechselwirkungen manifestieren sich in der spektralen Reflektanz, die wichtige Informationen ĂŒber den Zustand und die Gesundheit der Pflanzen enthĂ€lt. Vor dem Hintergrund einer steigenden Nachfrage nach Nahrungsmitteln durch eine wachsende Weltbevölkerung können diese Informationen in landwirtschaftliche Managementsysteme einfließen, um eine notwendige Ertragsmaximierung zu unterstĂŒtzen. Gleichzeitig können sie eine effiziente Optimierung der DĂŒngung und SchĂ€dlingsbekĂ€mpfung ermöglichen, um die Umweltauswirkungen der Landwirtschaft zu minimieren. Die Ableitung biophysikalischer und biochemischer Pflanzeneigenschaften aus hyperspektralen Reflektanzdaten ist dabei immer von einem Modell abhĂ€ngig. Diese Modelle werden in (1) parametrische, (2) nichtparametrische, (3) physikalisch basierte und (4) hybride Ableitungsmethoden kategorisiert. Parametrische Methoden definieren einen expliziten parametrisierten Ausdruck, der eine Reihe von SpektralkanĂ€len oder deren Ableitungen mit einem Pflanzenmerkmal von Interesse in Beziehung setzt. Nichtparametrische Methoden umfassen lineare Techniken wie die Hauptkomponentenanalyse (PCA). Diese adressieren KollinearitĂ€tsprobleme zwischen benachbarten KanĂ€len und komprimieren die gesamte Spektralinformation in dimensionsreduzierte, maximal informative Hauptkomponenten (PCs). Nichtparametrische nichtlineare Methoden, d. h. Algorithmen des maschinellen Lernens (ML), wenden nichtlineare Transformationen auf bildgebende Spektroskopiedaten an und sind daher in der Lage, nichtlineare Beziehungen innerhalb der enthaltenen spektralen Merkmale zu erfassen. Physikalisch basierte Methoden sind ein Oberbegriff fĂŒr Strahlungstransfermodelle (RTM) und damit verbundene Ableitungsschemata, d. h. Invertierungsverfahren wie z. B. die Invertierung mittels Look-up-Table (LUT). Ein einfaches, leicht invertierbares und spezifisches RTM stellt das Lambert-Beer'sche Gesetz dar, das zur direkten Ableitung des Wassergehalts von Pflanzen verwendet werden kann. Das am weitesten verbreitete, allgemeine und invertierbare RTM ist das eindimensionale Bestandsmodell PROSAIL, eine Kopplung des Blattmodells Leaf Optical Properties Spectra (PROSPECT) mit dem Bestandsreflexionsmodell 4SAIL (Scattering by Arbitrarily Inclined Leaves). Bei hybriden Methoden werden von RTMs generierte, synthetische Datenbanken entweder zur Kalibrierung parametrischer Methoden oder zum Training nichtparametrischer ML-Algorithmen verwendet. Aufgrund der ÄquifinalitĂ€tsproblematik bei der RTM-Invertierung, mĂŒssen potenziell unrealistische und redundante Simulationen in einer solchen Datenbank durch die Implementierung natĂŒrlicher physiologischer BeschrĂ€nkungen oder durch die Anwendung von Active Learning (AL) Heuristiken entfernt werden. In dieser kumulativen Dissertation werden drei verschiedene hybride AnsĂ€tze zur Ableitung landwirtschaftlich relevanter Pflanzenmerkmale aus spektrometrischen Bilddaten vorgestellt, die anhand von drei wissenschaftlichen Publikationen demonstriert werden. In Paper I wird das Lambert-Beer'sche Gesetz angewandt, um die Dicke der optisch aktiven Wasserschicht (bzw. EWT) direkt aus dem Absorptionsmerkmal von flĂŒssigem Wasser bei 970 nm abzuleiten. Das Modell wird mit 50.000 PROSPECT-Spektren kalibriert und anhand von In-situ-Daten validiert. Aufgrund separater Messungen des Wassergehalts von BlĂ€ttern, StĂ€ngeln und FrĂŒchten wĂ€hrend der MĂŒnchen-Nord-Isar (MNI)-Kampagnen, zeigen die Ergebnisse, dass je nach Kulturart und -struktur, unterschiedliche Teile des Bestandes mit optischen Sensoren beobachtet werden können. Bei Winterweizen wurde die höchste Korrelation zwischen gemessenem und modelliertem Wassergehalt fĂŒr Ähren und BlĂ€tter erzielt und sie erreichte Bestimmtheitsmaße (R2) von bis zu 0,72 bei einem relativen RMSE (rRMSE) von 26%, bei Mais entsprechend nur fĂŒr die Blattfraktion (R2 = 0,86, rRMSE = 23%). Diese Ergebnisse fĂŒhrten zu der allgemeinen Empfehlung, Kompartiment-spezifische EWT-Bestandsmessungen zu erheben, anstatt der ĂŒblichen Praxis, blattbasierte EWT-Messungen durch Multiplikation mit dem BlattflĂ€chenindex (LAI) auf den Bestandswassergehalt (CWC) hochzurechnen. Das entwickelte und kalibrierte Modell zur Ableitung des Pflanzenwassergehalts (PWR) erwies sich als rĂ€umlich und zeitlich ĂŒbertragbar und kann auf bald verfĂŒgbare EnMAP-Daten und andere hyperspektrale Bilddaten angewendet werden. In Paper II wird das parametrische Konzept der spektralen Integralratios (SIR) eingefĂŒhrt, um den Chlorophyll a- und b-Gehalt (Cab), den Karotinoidgehalt (Ccx) und den Wassergehalt (Cw) simultan aus bildgebenden Spektroskopiedaten im WellenlĂ€ngenbereich 460-1100 nm zu ermitteln. Das SIR-Konzept basiert auf der automatischen Separierung der jeweiligen Absorptionsmerkmale durch lokale Maxima- und Schnittpunkt-Analyse zwischen log-transformierter Reflektanz und konvexen HĂŒllen. Der Ansatz wurde anhand einer physiologisch eingeschrĂ€nkten PROSAIL-Datenbank unter BerĂŒcksichtigung natĂŒrlicher Ccx-Cab-Beziehungen und Positionen der Maxima im grĂŒnen WellenlĂ€ngenbereich validiert. Die Validierung mit flugzeuggestĂŒtzten spektrometrischen HyMAP-Daten ergab zufriedenstellende Ergebnisse fĂŒr Cab (R2 = 0,84; RMSE = 9,06 ”g cm-2) und CWC (R2 = 0,70; RMSE = 0,05 cm). Die ermittelten Ccx-Werte wurden anhand einer PlausibilitĂ€tsanalyse entsprechend der Cab-Ccx-AbhĂ€ngigkeit als sinnvoll bewertet. Die Darstellung der SIR-Ergebnisse als mehrkanalige Bilder (3 segment SIR) ermöglicht zudem eine auf die drei betrachteten biochemischen Variablen bezogene, intuitive Visualisierung der dominanten Absorptionen. Der vorgestellte SIR-Algorithmus ermöglicht somit wenig rechenintensive und RTM-gestĂŒtzte robuste Ableitungen der beiden wichtigsten Pigmente sowie des Wassergehalts und kann in auf jegliche zukĂŒnftig verfĂŒgbare Hyperspektraldaten angewendet werden. In Paper III wird ein hybrider Ansatz vorgestellt, der RTM mit ML kombiniert, um den Kohlenstoffgehalt (Carea) sowie die oberirdische trockene und frische Biomasse (AGBdry, AGBfresh) abzuschĂ€tzen. Das Konzept umfasst die Erstellung einer PROSAIL-Trainingsdatenbank, die Dimensionsreduzierung mittels PCA, die Reduzierung der Stichprobenanzahl mittels AL anhand des vier Jahre umspannenden MNI-Kampagnendatensatzes und das Training von Gaussian Process Regression (GPR) ML-Algorithmen. Die interne Validierung der GPR-Carea und GPR-AGB-Modelle ergab einen R2 von 0,80 fĂŒr Carea und einen R2 von 0,80 bzw. 0,71 fĂŒr AGBdry und AGBfresh. Die Validierung auf einem unabhĂ€ngigen Datensatz, der flugzeuggestĂŒtzte AVIRIS-NG-Bilder (spektral auf EnMAP umgerechnet) und In-situ-Messungen umfasste, zeigte erfolgreich die KartierungsfĂ€higkeiten sowohl fĂŒr offene Böden als auch fĂŒr grĂŒne Felder und fĂŒhrte zu zuverlĂ€ssigen SchĂ€tzungen auf Winterweizenfeldern bei geringen Modellunsicherheiten (< 40%). Insgesamt zeigen die vorgeschlagenen Kohlenstoff- und Biomassemodelle einen vielversprechenden Ansatz auf, der zur Ableitung dieser wichtigen Variablen ĂŒber AnbauflĂ€chen aus kĂŒnftigen weltraumgestĂŒtzten Hyperspektralaufnahmen wie jenen von EnMAP genutzt werden kann. Als Schlussfolgerungen ergeben sich die folgenden wichtigen Erkenntnisse in Bezug auf parametrische und nichtparametrische Hybridmethoden sowie bezogen auf die Bedeutung der In-situ-Datenerfassung. (1) Unsicherheiten innerhalb des RTM PROSAIL sollten immer berĂŒcksichtigt werden. Eine mögliche Verringerung dieser Unsicherheiten steht dabei der Invertierbarkeit des Modells und dessen beabsichtigter Einfachheit entgegen. (2) Sowohl physiologische EinschrĂ€nkungen als auch AL-Heuristiken sollten angewendet werden, um unrealistische Parameterkombinationen in einer PROSAIL-Kalibrierungs- oder Trainingsdatenbank zu reduzieren. (3) Modernste ML-AnsĂ€tze mit der FĂ€higkeit, Unsicherheitsintervalle bereitzustellen, werden als vielversprechendster Ansatz fĂŒr die Lösung von Inferenzproblemen aus hyperspektralen Erdbeobachtungsdaten aufgrund ihrer synergetischen Nutzung von RTMs und der hohen FlexibilitĂ€t, Genauigkeit und Konsistenz nichtlinearer nichtparametrischer Methoden angesehen. (4) Parametrische hybride AnsĂ€tze ermöglichen aufgrund ihrer algorithmischen Transparenz im Vergleich zu ML-AnsĂ€tzen tiefere Einblicke in die grundlegenden physikalischen Grenzen der optischen Fernerkundung. (5) Integralbasierte Indizes, die die verfĂŒgbare hyperspektrale Information voll ausschöpfen, können als physikalisch-basierte dimensionsreduzierte Inputs fĂŒr ML-Algorithmen dienen, um entweder SchĂ€tzungen zu verbessern oder um als Eingangsdaten die verbesserte Unterscheidung von Kulturpflanzen zu ermöglichen, sobald zusĂ€tzliche Zeitreiheninformationen verfĂŒgbar sind. (6) Die Validierung quantitativer modellbasierter SchĂ€tzungen ist von entscheidender Bedeutung fĂŒr die Bewertung und Verbesserung ihrer LeistungsfĂ€higkeit in Bezug auf die zugrunde liegenden Annahmen, Modellparametrisierungen und Eingabedaten. (7) Angesichts der bald verfĂŒgbaren EnMAP-Daten sollte die Erhebung von In-situ-Daten zur Validierung von Ableitungsmethoden auf eine hohe VariabilitĂ€t der gemessenen Pflanzentypen und eine hohe zeitliche VariabilitĂ€t ĂŒber die gesamte Vegetationsperiode abzielen sowie flĂ€chen- und biomassebasierte destruktive Messungen anstelle von LAI-skalierten Blattmessungen umfassen. Unter der Voraussetzung, dass die Messinstrumente perfekt funktionieren, hĂ€ngt der Erfolg der EnMAP-Mission und der hier vorgestellten Methoden entscheidend von einem rauscharmen, prĂ€zise atmosphĂ€risch korrigierten Reflektanzprodukt ab. Die Ergebnisse der in dieser Arbeit vorgestellten Methoden können in landwirtschaftliche EntscheidungsunterstĂŒtzungssysteme fĂŒr die DĂŒnge- oder BewĂ€sserungsplanung, die ErtragsabschĂ€tzung oder die SchĂ€tzung des Potenzials der Kohlenstoffbindung im Boden integriert werden, um eine nachhaltige Intensivlandwirtschaft in der Zukunft zu ermöglichen

    MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) Collection 5. NASA Headquarters

    Get PDF
    In the original EOS proposal competition in 1989, Dr. Steve Running proposed and was selected as MODIS Science team member responsible for Leaf area index, evapotranspiration and photosynthesis/net primary production, then designated as MOD 15, 16 and 17. At the ATBD review for at-launch products in 1995, NASA decided to give MOD 15 LA I/FPAR to Dr. Ranga Myneni to provide a more theoretically based algorithm, and Dr. Running was directed to focus on MOD 17 PSN/NPP for the Terra atlaunch data product. MOD 16 ET was not dropped, but was deprioritized. At the EOS recompete in 2003 NASA selected another investigator to build a MOD 16 ET product but this investigation was not renewed in 2007. In the interim Dr. Running and the NTSG group had changed from an energy balance - surface resistance concept to a Penman-Monteith concept, and had greater success building a globally applicable algorithm. Since much of the processing paralleled our MOD 17 product, NTSG tested, then generated initial global ET datasets. In the 2010 renewal competition for the MODIS Science Team, Dr. Running reproposed MOD 16, based on the new algorithm and global ET datasets now developed, and published in refereed journals. Now, with selection of our 2010 renewal proposal complete, we offer the ATBD. This document represents our formal ATBD for establishing this algorithm and dataset as the official MOD 16 Evapotranspiration product

    Impact of climate change on agricultural and natural ecosystems

    Get PDF
    This book illustrates the main results deriving from fourteen studies, dealing with the impact of climate change on different agricultural and natural ecosystems, carried out within the Impact of Climate change On agricultural and Natural Ecosystems (ICONE) project funded by the ALFA Programme of the European Commission. During this project, a common methodology on several Global Change-related matters was developed and shared among members of scientific communities coming from Latin America and Europe. In order to facilitate this interdisciplinary approach, specific mobility programmes, addressed to post-graduate, Master and PhD students, have been organized. The research, led by the research groups, was focused on the study of the impact of climate change on various environmental features (i.e. runoff in hydrological basins, soil erosion and moisture, forest canopy, sugarcane crop, land use, drought, precipitation, etc). Integrated and shared methodologies of atmospheric physics, remote sensing, eco-physiology and modelling have been applied

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data

    Assimilation of remote sensing into crop growth models: Current status and perspectives

    Get PDF
    Timely monitoring of crop lands is important in order to make agricultural activities more sustainable, as well as ensuring food security. The use of Earth Observation (EO) data allows crop monitoring at a range of spatial scales, but can be hampered by limitations in the data. Crop growth modelling, on the other hand, can be used to simulate the physiological processes that result in crop development. Data assimilation (DA) provides a way of blending the monitoring properties of EO data with the predictive and explanatory abilities of crop growth models. In this paper, we first provide a critique of both the advantages and disadvantages of both EO data and crop growth models. We use this to introduce a solid and robust framework for DA, where different DA methods are shown to be derived from taking different assumptions in solving for the a posteriori probability density function (pdf) using Bayes’ rule. This treatment allows us to provide some recommendation on the choice of DA method for particular applications. We comment on current computational challenges in scaling DA applications to large spatial scales. Future areas of research are sketched, with an emphasis on DA as an enabler for blending different observations, as well as facilitating different approaches to crop growth models. We have illustrated this review with a large number of examples from the literature

    Characterizing Dryland Ecosystems Using Remote Sensing and Dynamic Global Vegetation Modeling

    Get PDF
    Drylands include all terrestrial regions where the production of crops, forage, wood and other ecosystem services are limited by water. These ecosystems cover approximately 40% of the earth terrestrial surface and accommodate more than 2 billion people (Millennium Ecosystem Assessment, 2005). Moreover, the interannual variability of the global carbon budget is strongly regulated by vegetation dynamics in drylands. Understanding the dynamics of such ecosystems is significant for assessing the potential for and impacts of natural or anthropogenic disturbances and mitigation planning, and a necessary step toward enhancing the economic and social well-being of dryland communities in a sustainable manner (Global Drylands: A UN system-wide response, 2011). In this research, a combination of remote sensing, field data collection, and ecosystem modeling were used to establish an integrated framework for semi-arid ecosystems dynamics monitoring. Foliar nitrogen (N) plays an important role in vegetation processes such as photosynthesis and there is wide interest in retrieving this variable from hyperspectral remote sensing data. In this study, I used the theory of canopy spectral invariants (AKA p-theory) to understand the role of canopy structure and soil in the retrieval of foliar N from hyperspectral data and machine learning techniques. The results of this study showed the inconsistencies among different machine learning techniques used for estimating N. Using p-theory, I demonstrated that soil can contribute up to 95% to the total radiation budget of the canopy. I suggested an alternative approach to study photosynthesis is the use of dynamic global vegetation models (DGVMs). Gross primary production (GPP) is the apparent ecosystem scale photosynthesis that can be estimated using DGVMs. In this study, I performed a thorough sensitivity analysis and calibrated the Ecosystem Demography (EDv2.2) model along an elevation gradient in a dryland study area. I investigated the GPP capacity and activity by comparing the EDv2.2 GPP with flux towers and remote sensing products. The overall results showed that EDv2.2 performed well in capturing GPP capacity and its long term trend at lower elevation sites within the study area; whereas the model performed worse at higher elevations likely due to the change in vegetation community. I discussed that adding more heterogeneity and modifying ecosystem processes such as phenology and plant hydraulics in ED.v2.2 will improve its application to higher elevation ecosystems where there is more vegetation production. And finally, I developed an integrated hyperspectral-lidar framework for regional mapping of xeric and mesic vegetation in the study area. I showed that by considering spectral shape and magnitude, canopy structure and landscape features (riparian zone), we can develop a straightforward algorithm for vegetation mapping in drylands. This framework is simple, easy to interpret and consistent with our ecological understanding of vegetation distribution in drylands over large areas. Collectively, the results I present in this dissertation demonstrate the potential for advanced remote sensing and modeling to help us better understand ecosystem processes in drylands

    Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt

    Get PDF
    In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type

    Modelling trends in evapotranspiration using the MODIS LAI for selected Eastern Cape catchments

    Get PDF
    Grassland is the dominant vegetation cover of many of the 19 Water Catchment Areas within South Africa. The inappropriate management of some of these grassland catchments by the communities that depend on them for their livelihoods, often results in overgrazed lands with low biomass or invasive alien species. The short grass maintained by grazing policies of many communities results in high storm flows that have an adverse effect on the quantity and quality of runoff and recharge. Catchment-scale water balances depend on accurate estimates of run-off, recharge and evapotranspiration (ET). This study focuses on the ET component of the catchment scale water balance and explores the effect of two different grazing strategies on ET. To achieve this, two contrasting but adjacent quaternary catchments namely: P10A (a high biomass site) and Q91C (a low biomass site) were selected within the Bushman’s River Primary catchment as primary study sites. Within each catchment, a relatively homogenous pixel of 1 km was selected, representing contrasting example of high and low intensity grazing. From an eleven year MODIS leaf area index (LAI) data stack (March 2000 – 2010), 8-day LAI values was extracted for each pixel in each catchment. Using the Penman- Monteith equation, potential evapotranspiration (ET0) was calculated using data from a nearly automatic weather station. Actual evapotranspiration was estimated by adjusting ET0 using the values extracted from the MODIS LAI product. The MODIS LAI ET (ETMODIS) obtained for the eleven year period for both 1 km pixels decreased consistently, reflecting a general trend in declining LAI throughout the Eastern Cape. The highest ETMODIS obtained from P10A was 610.3 mm (2001) and the lowest was 333.1 mm (2009). Then from Q91C the highest ET obtained was 534.7 mm (2006) and the lowest was 266.2 mm (2009). The ETMODIS results were validated for each catchment using the Open Top Chamber (OTC) which sums the water lost from vegetation and soil within the chamber. This validation was conducted during the growing season of 2010–11. Wind speed; relative humidity and temperature were measured both at the inlet and the outlet of the chamber on five clear sunny days for each 1 km pixel. ETa for the same period was compared to the OTC ET (ETOTC) using the regression analysis and a good relationship was observed with the r2 of 0.7065. The relationship observed confirmed that ETOTC closely approximates ETMODIS and that the OTC can be used as a tool to validate MODIS LAI ET on clear, low winds and sunny days. In order to demonstrate proof-of-concept for the use of this modeling of ETMODIS within a Payment for Ecosystem Services framework, the approach was applied to two other quaternary catchments under communal tenure. Within each catchment, three land use scenarios were created for each catchment to reflect potential changes in the standing aboveground biomass. For Scenario 1, the status quo was maintained; for Scenario 2, MODIS pixels representing 28 km in each catchment were selected and the LAI of these pixels was doubled; and for scenario 3, LAI was halved. ETMODIS was calculated for each scenario by adjusting the ET0 data from a nearby automatic weather station with the MODIS LAI product. The results showed that the estimated annual ETMODIS obtained from the high biomass catchment was 111 mm greater than that obtained from the low biomass catchment. When comparing between the scenarios, the annual ETMODIS obtained from scenario 2 was the highest of the 3 scenarios for both sites. These results confirm that increased leaf area results in higher annual ETMODIS. This has a positive long term impact on stream flow, as high grass biomass allows the rainfall to infiltrate the soil and be gradually released to the dams with reduced magnitude of storm flows. This approach has the potential to quantify the benefits to down-stream water users of improving above-ground biomass in catchments
    • 

    corecore