2,103 research outputs found

    Integral partitioning approach to stability analysis and stabilization of distributed time delay systems

    Get PDF
    In this paper, the problems of delay-dependent stability analysis and stabilization are investigated for linear continuous-time systems with distributed delay. By introducing an integral partitioning technique, a new form of Lyapunov-Krasovskii functional (LKF) is constructed and improved distributed delay dependent stability conditions are established in terms of linear matrix inequalities (LMIs). Based on the criteria, a design algorithm for a state feedback controller is proposed. The results developed in this paper are less conservative than existing ones in the literature, which is illustrated by several examples. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5094–509

    Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays

    Get PDF
    published_or_final_versio

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    A novel descriptor redundancy method based on delay partition for exponential stability of time delay systems

    Full text link
    This is an Author's Accepted Manuscript of an article published in Antonio González (2021) A novel descriptor redundancy method based on delay partition for exponential stability of time delay systems, International Journal of Systems Science, 52:8, 1707-1718, DOI: 10.1080/00207721.2020.1869344, available online at: http://www.tandfonline.com/10.1080/00207721.2020.1869344[EN] This paper investigates the exponential stability of uncertain time delay systems using a novel descriptor redundancy approach based on delay partitioning. First, the original system is casted into an equivalent descriptor singular state¿space representation by introducing redundant state variables so that the resulting delay is progressively reduced. From the equivalent model and applying Lyapunov Functional method, a sufficient condition based on Linear Matrix Inequalities (LMIs) for exponential stability with guaranteed decay rate performance is obtained. As a result, the inherent conservatism of Lyapunov¿Krasovskii functional techniques can arbitrarily be reduced by increasing the number of delay partition intervals including decay rate performance and model uncertainties in polytopic form. Various benchmark examples are provided to validate the effectiveness of the proposed method, showing better trade-off between conservatism and performance in comparison to previous approaches.This work was supported by project PGC2018-098719-B-I00 (MCIU/AEI/FEDER,UE).González Sorribes, A. (2021). A novel descriptor redundancy method based on delay partition for exponential stability of time delay systems. International Journal of Systems Science. 52(8):1707-1718. https://doi.org/10.1080/00207721.2020.18693441707171852

    Summation Inequalities to Bounded Real Lemmas of Discrete-Time Systems With Time-Varying Delay

    Get PDF

    Robust H

    Get PDF

    Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach

    Get PDF
    This paper focuses on the problem of delay-dependent robust dissipativity analysis for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-distributed white noise sequences. Based on the Itô's differential formula, Lyapunov stability theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived using delay partitioning approach to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Numerical examples are constructed to show the effectiveness of the theoretical results

    Absolute Stability of a Class of Nonlinear Singular Systems with Time Delay

    Get PDF
    This paper deals with the absolute stability for a class of nonlinear singular systems with time delay. By employing a new Lyapunov-Krasovskii functional with the idea of partitioning delay length, improved delay-dependent stability criteria are established. The resulting condition is formulated in terms of linear matrix inequalities (LMIs), which is easy to be verified by exiting LMI optimization algorithms. A numerical example is given to show the effectiveness of the proposed technique and its improvements over the existing results

    Stability analysis of markovian jump systems with multiple delay components and polytopic uncertainties

    Get PDF
    This paper investigates the stability problem of Markovian jump systems with multiple delay components and polytopic uncertainties. A new Lyapunov-Krasovskii functional is used for the stability analysis of Markovian jump systems with or without polytopic uncertainties. Two numerical examples are provided to demonstrate the applicability of the proposed approach. © Springer Science+Business Media, LLC 2011.published_or_final_versio

    Integrated fault estimation and accommodation design for discrete-time Takagi-Sugeno fuzzy systems with actuator faults

    Get PDF
    This paper addresses the problem of integrated robust fault estimation (FE) and accommodation for discrete-time Takagi–Sugeno (T–S) fuzzy systems. First, a multiconstrained reduced-order FE observer (RFEO) is proposed to achieve FE for discrete-time T–S fuzzy models with actuator faults. Based on the RFEO, a new fault estimator is constructed. Then, using the information of online FE, a new approach for fault accommodation based on fuzzy-dynamic output feedback is designed to compensate for the effect of faults by stabilizing the closed-loop systems. Moreover, the RFEO and the dynamic output feedback fault-tolerant controller are designed separately, such that their design parameters can be calculated readily. Simulation results are presented to illustrate our contributions
    corecore