670 research outputs found

    HybridConcatenated Coding Scheme for MIMO Systems

    Get PDF
    Abstract: Inthis paper, two hybrid concatenated super-orthogonal space-time trellis codes(SOSTTC) applying iterative decoding are proposed for flat fading channels. Theencoding operation is based on the concatenation of convolutional codes,interleaving and super-orthogonal space-time trellis codes. The firstconcatenated scheme consists of a serial concatenation of a parallelconcatenated convolutional code with a SOSTTC while the second consists ofparallel concatenation of two serially concatenated convolutional and SOSTTCcodes. The decoding of these two schemes is described, their pairwise errorprobabilities are derived and the frame error rate (FER) performances areevaluated by computer simulation in Rayleigh fading channels. The proposedtopologies are shown to perform better than existing concatenated schemes with aconstituent code of convolutional andspace-time codes in literature

    Collaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks

    Get PDF
    Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such systems is the availability of high-speed and robust communication links. Unfortunately, communications over wireless channels inherently suffer from a number of fundamental physical limitations, such as multipath fading, scarce radio spectrum, and limited battery power supply for mobile devices. Cooperative diversity (CD) technology is a promising solution for future wireless communication systems to achieve broader coverage and to mitigate wireless channels’ impairments without the need to use high power at the transmitter. In general, cooperative relaying systems have a source node multicasting a message to a number of cooperative relays, which in turn resend a processed version message to an intended destination node. The destination node combines the signal received from the relays, and takes into account the source’s original signal to decode the message. The CD communication systems exploit two fundamental features of the wireless medium: its broadcast nature and its ability to achieve diversity through independent channels. A variety of relaying protocols have been considered and utilized in cooperative wireless networks. Amplify and forward (AAF) and decode and forward (DAF) are two popular protocols, frequently used in the cooperative systems. In the AAF mode, the relay amplifies the received signal prior to retransmission. In the DAF mode, the relay fully decodes the received signal, re-encodes and forwards it to the destination. Due to the retransmission without decoding, AAF has the shortcoming that noise accumulated in the received signal is amplified at the transmission. DAF suffers from decoding errors that can lead to severe error propagation. To further enhance the quality of service (QoS) of CD communication systems, hybrid Automatic Repeat-reQuest (HARQ) protocols have been proposed. Thus, if the destination requires an ARQ retransmission, it could come from one of relays rather than the source node. This thesis proposes an improved HARQ scheme with an adaptive relaying protocol (ARP). Focusing on the HARQ as a central theme, we start by introducing the concept of ARP. Then we use it as the basis for designing three types of HARQ schemes, denoted by HARQ I-ARP, HARQ II-ARP and HARQ III-ARP. We describe the relaying protocols, (both AAF and DAF), and their operations, including channel access between the source and relay, the feedback scheme, and the combining methods at the receivers. To investigate the benefits of the proposed HARQ scheme, we analyze its frame error rate (FER) and throughput performance over a quasi-static fading channel. We can compare these with the reference methods, HARQ with AAF (HARQ-AAF) and HARQ with perfect distributed turbo codes (DTC), for which correct decoding is always assumed at the relay (HARQ-perfect DTC). It is shown that the proposed HARQ-ARP scheme can always performs better than the HARQ-AAF scheme. As the signal-to-noise ratio (SNR) of the channel between the source and relay increases, the performance of the proposed HARQ-ARP scheme approaches that of the HARQ-perfect DTC scheme

    Super-orthogonal space-time turbo coded OFDM systems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.The ever increasing demand for fast and efficient broadband wireless communication services requires future broadband communication systems to provide a high data rate, robust performance and low complexity within the limited available electromagnetic spectrum. One of the identified, most-promising techniques to support high performance and high data rate communication for future wireless broadband services is the deployment of multi-input multi-output (MIMO) antenna systems with orthogonal frequency division multiplexing (OFDM). The combination of MIMO and OFDM techniques guarantees a much more reliable and robust transmission over a hostile wireless channel through coding over the space, time and frequency domains. In this thesis, two full-rate space-time coded OFDM systems are proposed. The first one, designed for two transmit antennas, is called extended super-orthogonal space-time trellis coded OFDM (ESOSTTC-OFDM), and is based on constellation rotation. The second one, called super-quasi-orthogonal space-time trellis coded OFDM (SQOSTTCOFDM), combines a quasi-orthogonal space-time block code with a trellis code to provide a full-rate code for four transmit antennas. The designed space-time coded MIMO-OFDM systems achieve a high diversity order with high coding gain by exploiting the diversity advantage of frequency-selective fading channels. Concatenated codes have been shown to be an effective technique of achieving reliable communication close to the Shannon limit, provided that there is sufficient available diversity. In a bid to improve the performance of the super orthogonal space-time trellis code (SOSTTC) in frequency selective fading channels, five distinct concatenated codes are proposed for MIMO-OFDM over frequency-selective fading channels in the second part of this thesis. Four of the coding schemes are based on the concatenation of convolutional coding, interleaving, and space-time coding, along multiple-transmitter diversity systems, while the fifth coding scheme is based on the concatenation of two space-time codes and interleaving. The proposed concatenated Super-Orthogonal Space-Time Turbo-Coded OFDM System I. B. Oluwafemi 2012 vii coding schemes in MIMO-OFDM systems achieve high diversity gain by exploiting available diversity resources of frequency-selective fading channels and achieve a high coding gain through concatenations by employing the turbo principle. Using computer software simulations, the performance of the concatenated SOSTTC-OFDM schemes is compared with those of concatenated space-time trellis codes and those of conventional SOSTTC-OFDM schemes in frequency-selective fading channels. Simulation results show that the concatenated SOSTTC-OFDM system outperformed the concatenated space-time trellis codes and the conventional SOSTTC-OFDM system under the various channel scenarios in terms of both diversity order and coding gain

    Super-orthogonal space-time turbo codes in Rayleigh fading channels.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005.The vision of anytime, anywhere communications coupled by the rapid growth of wireless subscribers and increased volumes of internet users, suggests that the widespread demand for always-on access data, is sure to be a major driver for the wireless industry in the years to come. Among many cutting edge wireless technologies, a new class of transmission techniques, known as Multiple-Input Multiple-Output (MIMO) techniques, has emerged as an important technology leading to promising link capacity gains of several fold increase in data rates and spectral efficiency. While the use of MIMO techniques in the third generation (3G) standards is minimal, it is anticipated that these technologies will play an important role in the physical layer of fixed and fourth generation (4G) wireless systems. Concatenated codes, a class of forward error correction codes, of which Turbo codes are a classical example, have been shown to achieve reliable performance which approach the Shannon limit. An effective and practical way to approach the capacity of MIMO wireless channels is to employ space-time coding (STC). Space-Time coding is based on introducing joint correlation in transmitted signals in both the space and time domains. Space-Time Trellis Codes (STTCs) have been shown to provide the best trade-off in terms of coding gain advantage, improved data rates and computational complexity. Super-Orthogonal Space-Time Trellis Coding (SOSTTC) is the recently proposed form of space-time trellis coding which outperforms its predecessor. The code has a systematic design method to maximize the coding gain for a given rate, constellation size, and number of states. Simulation and analytical results are provided to justify the improved performance. The main focus of this dissertation is on STTCs, SOSTTCs and their concatenated versions in quasi-static and rapid Rayleigh fading channels. Turbo codes and space-time codes have made significant impact in terms of the theory and practice by closing the gap on the Shannon limit and the large capacity gains provided by the MIMO channel, respectively. However, a convincing solution to exploit the capabilities provided by a MIMO channel would be to build the turbo processing principle into the design of MIMO architectures. The field of concatenated STTCs has already received much attention and has shown improved performance over conventional STTCs. Recently simple and double concatenated STTCs structures have shown to provide a further improvement performance. Motivated by this fact, two concatenated SOSTTC structures are proposed called Super-orthogonal space-time turbo codes. The performance of these new concatenated SOSTTC is compared with that of concatenated STTCs and conventional SOSTTCs with simulations in Rayleigh fading channels. It is seen that the SOST-CC system outperforms the ST-CC system in rapid fading channels, whereas it maintains performance similar to that in quasi-static. The SOST-SC system has improved performance for larger frame lengths and overall maintains similar performance with ST-SC systems. A further investigation of these codes with channel estimation errors is also provided

    Pragmatic Space-Time Codes for Cooperative Relaying in Block Fading Channels

    Get PDF
    We address the problem of construction of space-time codes for cooperative communications in block fading channels. More precisely, we consider a pragmatic approach based on the concatenation of convolutional codes and BPSK/QPSK modulation to obtain cooperative codes for relay networks, for which we derive the pairwise error probability, an asymptotic bound for frame error probability, and a design criterion to optimize both diversity and coding gain. Based on this framework, we set up a code search procedure to obtain a set of good pragmatic space-time codes (P-STCs) with overlay construction, suitable for cooperative communication with a variable number of relays in quasistatic channel, which outperform in terms of coding gain other space-time codes (STCs) proposed in the literature. We also find that, despite the fact that the implementation of pragmatic space-time codes requires standard convolutional encoders and Viterbi decoders with suitable generators and branch metric, thus having low complexity, they perform quite well in block fading channels, including quasistatic channel, even with a low number of states and relays

    New bounding techniques for channel codes over quasi-static fading channels

    Get PDF
    This thesis is intended to provide several new bounding techniques for channel codes over quasi-static fading channels (QSFC). This type of channel has drawn more and more attention recently with the demanding need for higher capacity and more reliable wireless communication systems. Although there have been some published results on analyzing the performance of channel codes over QSFCs, most of them produced quite loose performance upper bounds. In this thesis, the general Gallager bounding approach which provides convergent upper bounds of coded systems over QSFCs is addressed first. It is shown that previous Gallager bounds employing trivial low SNR bounds tended to be quite loose. Then improved low instantaneous SNR bounds are derived for two classes of convolutional codes including turbo codes. Consequently, they are combined with the classical Union-Chernoff bound to produce new performance upper bounds for simple convolutional and turbo codes over single-input single-output (SISO) QSFCs. The new bound provides a much improved alternative to characterizing the performance of channel codes over QSFCs over the existing ones. Next the new bounding approach is extended to cases of serially concatenated space-time block codes, which show equivalence with SISO QSFCs. Tighter performance bounds are derived for this coding scheme for two specific cases: first a convolutional code, and later a turbo code. Finally, the more challenging cases of multiple-input multiple-output (MIMO) QSFCs are investigated. Several performance upper bounds are derived for the bit error probability of different cases of space-time trellis codes (STTC) over QSFCs using a new and tight low SNR bound. Also included in this work is an algorithm for computing the unusual information eigenvalue spectrum of STTCs

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Space-time coding techniques for high data rate wireless communications

    Full text link

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor
    • …
    corecore