44 research outputs found

    Countering Cybersecurity Vulnerabilities in the Power System

    Get PDF
    Security vulnerabilities in software pose an important threat to power grid security, which can be exploited by attackers if not properly addressed. Every month, many vulnerabilities are discovered and all the vulnerabilities must be remediated in a timely manner to reduce the chance of being exploited by attackers. In current practice, security operators have to manually analyze each vulnerability present in their assets and determine the remediation actions in a short time period, which involves a tremendous amount of human resources for electric utilities. To solve this problem, we propose a machine learning-based automation framework to automate vulnerability analysis and determine the remediation actions for electric utilities. Then the determined remediation actions will be applied to the system to remediate vulnerabilities. However, not all vulnerabilities can be remediated quickly due to limited resources and the remediation action applying order will significantly affect the system\u27s risk level. Thus it is important to schedule which vulnerabilities should be remediated first. We will model this as a scheduling optimization problem to schedule the remediation action applying order to minimize the total risk by utilizing vulnerabilities\u27 impact and their probabilities of being exploited. Besides, an electric utility also needs to know whether vulnerabilities have already been exploited specifically in their own power system. If a vulnerability is exploited, it has to be addressed immediately. Thus, it is important to identify whether some vulnerabilities have been taken advantage of by attackers to launch attacks. Different vulnerabilities may require different identification methods. In this dissertation, we explore identifying exploited vulnerabilities by detecting and localizing false data injection attacks and give a case study in the Automatic Generation Control (AGC) system, which is a key control system to keep the power system\u27s balance. However, malicious measurements can be injected to exploited devices to mislead AGC to make false power generation adjustment which will harm power system operations. We propose Long Short Term Memory (LSTM) Neural Network-based methods and a Fourier Transform-based method to detect and localize such false data injection attacks. Detection and localization of such attacks could provide further information to better prioritize vulnerability remediation actions

    Quantitative risk assessment under multi-context environments

    Get PDF
    Doctor of PhilosophyDepartment of Computing and Information SciencesXinming OuIf you cannot measure it, you cannot improve it. Quantifying security with metrics is important not only because we want to have a scoring system to track our efforts in hardening cyber environments, but also because current labor resources cannot administrate the exponentially enlarged network without a feasible risk prioritization methodology. Unlike height, weight or temperature, risk from vulnerabilities is sophisticated to assess and the assessment is heavily context-dependent. Existing vulnerability assessment methodologies (e.g. CVSS scoring system, etc) mainly focus on the evaluation over intrinsic risk of individual vulnerabilities without taking their contexts into consideration. Vulnerability assessment over network usually output one aggregated metric indicating the security level of each host. However, none of these work captures the severity change of each individual vulnerabilities under different contexts. I have captured a number of such contexts for vulnerability assessment. For example, the correlation of vulnerabilities belonging to the same application should be considered while aggregating their risk scores. At system level, a vulnerability detected on a highly depended library code should be assigned with a higher risk metric than a vulnerability on a rarely used client side application, even when the two have the same intrinsic risk. Similarly at cloud environment, vulnerabilities with higher prevalences deserve more attention. Besides, zero-day vulnerabilities are largely utilized by attackers therefore should not be ignored while assessing the risks. Historical vulnerability information at application level can be used to predict underground risks. To assess vulnerability with a higher accuracy, feasibility, scalability and efficiency, I developed a systematic vulnerability assessment approach under each of these contexts.

    ICSrank: A Security Assessment Framework for Industrial Control Systems (ICS)

    Get PDF
    This thesis joins a lively dialogue in the technological arena on the issue of cybersecurity and specifically, the issue of infrastructure cybersecurity as related to Industrial Control Systems. Infrastructure cybersecurity is concerned with issues on the security of the critical infrastructure that have significant value to the physical infrastructure of a country, and infrastructure that is heavily reliant on IT and the security of such technology. It is an undeniable fact that key infrastructure such as the electricity grid, gas, air and rail transport control, and even water and sewerage services rely heavily on technology. Threats to such infrastructure have never been as serious as they are today. The most sensitive of them is the reliance on infrastructure that requires cybersecurity in the energy sector. The call to smart technology and automation is happening nowadays. The Internet is witnessing an increase number of connected industrial control system (ICS). Many of which don’t follow security guidelines. Privacy and sensitive data are also an issue. Sensitive leaked information is being manipulated by adversaries to accomplish certain agendas. Open Source intelligence (OSINT) is adopted by defenders to improve protection and safeguard data. This research presented in thesis, proposes “ICSrank” a novel security risk assessment for ICS devices based on OSINT. ICSrank ranks the risk level of online and offline ICS devices. This framework categorizes, assesses and ranks OSINT data using ICSrank framework. ICSrank provides an additional layer of defence and mitigation in ICS security, by identification of risky OSINT and devices. Security best practices always begin with identification of risk as a first step prior to security implementation. Risk is evaluated using mathematical algorithms to assess the OSINT data. The subsequent results achieved during the assessment and ranking process were informative and realistic. ICSrank framework proved that security and risk levels were more accurate and informative than traditional existing methods
    corecore