1,600 research outputs found

    Automatic Partial Extraction from the Modal Distribution

    Get PDF
    The Modal Distribution (MD) is a time-frequency distribution specifically designed to model the quasi-harmonic, multi-sinusoidal, nature of music signals and belongs to the Cohen general class of time-frequency distributions. The problem of signal synthesis from bilinear time-frequency representations such as the Wigner distribution has been investigated [1,14] us-ing methods which exploit an outer-product interpretation of these distributions. Methods of synthesis from the MD based on a sinusoidal-analysis-synthesis procedure using estimates of in-stantaneous frequency and amplitude values have relied on a heuristic search ‘by eye’ for peaks in the time-frequency domain [2,7,8]. An approach to detection of sinusoidal components with the Wigner Distribution has been investigated in [15] based on a comparison of peak magnitudes with the DFT and STFT. In this paper we propose an improved frequency smoothing kernel for use in MD partial tracking and adapt the McCauley-Quatieri sinusoidal analysis procedure to enable a sum of sinusoids synthe-sis. We demonstrate that the improved kernel enhances automatic partial extraction and that the MD estimates of instantaneous amplitude and frequency are preserved. Suggestions for future extensions to the synthesis procedure are given

    No-reference image quality assessment through the von Mises distribution

    Get PDF
    An innovative way of calculating the von Mises distribution (VMD) of image entropy is introduced in this paper. The VMD's concentration parameter and some fitness parameter that will be later defined, have been analyzed in the experimental part for determining their suitability as a image quality assessment measure in some particular distortions such as Gaussian blur or additive Gaussian noise. To achieve such measure, the local R\'{e}nyi entropy is calculated in four equally spaced orientations and used to determine the parameters of the von Mises distribution of the image entropy. Considering contextual images, experimental results after applying this model show that the best-in-focus noise-free images are associated with the highest values for the von Mises distribution concentration parameter and the highest approximation of image data to the von Mises distribution model. Our defined von Misses fitness parameter experimentally appears also as a suitable no-reference image quality assessment indicator for no-contextual images.Comment: 29 pages, 11 figure

    Detection of the valvular split within the second heart sound using the reassigned smoothed pseudo Wigner–Ville distribution

    Get PDF
    BACKGROUND: In this paper, we developed a novel algorithm to detect the valvular split between the aortic and pulmonary components in the second heart sound which is a valuable medical information. METHODS: The algorithm is based on the Reassigned smoothed pseudo Wigner–Ville distribution which is a modified time–frequency distribution of the Wigner–Ville distribution. A preprocessing amplitude recovery procedure is carried out on the analysed heart sound to improve the readability of the time–frequency representation. The simulated S2 heart sounds were generated by an overlapping frequency modulated chirp–based model at different valvular split durations. RESULTS: Simulated and real heart sounds are processed to highlight the performance of the proposed approach. The algorithm is also validated on real heart sounds of the LGB–IRCM (Laboratoire de Génie biomédical–Institut de recherches cliniques de Montréal) cardiac valve database. The A2–P2 valvular split is accurately detected by processing the obtained RSPWVD representations for both simulated and real data

    New approach in features extraction for EEG signal detection

    Get PDF
    4 pages, 3 figures.-- Contributed to: "Engineering the Future of Biomedicine", EMBC2009, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Minneapolis, Minnesota, USA, Sep 2-6, 2009).This paper describes a new approach in features extraction using time-frequency distributions (TFDs) for detecting epileptic seizures to identify abnormalities in electroencephalogram (EEG). Particularly, the method extracts features using the Smoothed Pseudo Wigner-Ville distribution combined with the McAulay-Quatieri sinusoidal model and identifies abnormal neural discharges. We propose a new feature based on the length of the track that, combined with energy and frequency features, allows to isolate a continuous energy trace from another oscillations when an epileptic seizure is beginning. We evaluate our approach using data consisting of 16 different seizures from 6 epileptic patients. The results show that our extraction method is a suitable approach for automatic seizure detection, and opens the possibility of formulating new criteria to detect and analyze abnormal EEGs.This work has been funded by the Spain CICYT grant TEC2008-02473.Publicad

    An Efficient Algorithm for Instantaneous Frequency Estimation of Nonstationary Multicomponent Signals in Low SNR

    Get PDF
    A method for components instantaneous frequency (IF) estimation of multicomponent signals in low signal-to-noise ratio (SNR) is proposed. The method combines a new proposed modification of a blind source separation (BSS) algorithm for components separation, with the improved adaptive IF estimation procedure based on the modified sliding pairwise intersection of confidence intervals (ICI) rule. The obtained results are compared to the multicomponent signal ICI-based IF estimation method for various window types and SNRs, showing the estimation accuracy improvement in terms of the mean squared error (MSE) by up to 23%. Furthermore, the highest improvement is achieved for low SNRs values, when many of the existing methods fail.Scopu

    A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television

    Get PDF
    Cataloged from PDF version of article.Diffraction and holography are fertile areas for application of signal theory and processing. Recent work on 3DTV displays has posed particularly challenging signal processing problems. Various procedures to compute Rayleigh-Sommerfeld, Fresnel and Fraunhofer diffraction exist in the literature. Diffraction between parallel planes and tilted planes can be efficiently computed. Discretization and quantization of diffraction fields yield interesting theoretical and practical results, and allow efficient schemes compared to commonly used Nyquist sampling. The literature on computer-generated holography provides a good resource for holographic 3DTV related issues. Fast algorithms to compute Fourier, Walsh-Hadamard, fractional Fourier, linear canonical, Fresnel, and wavelet transforms, as well as optimization-based techniques such as best orthogonal basis, matching pursuit, basis pursuit etc., are especially relevant signal processing techniques for wave propagation, diffraction, holography, and related problems. Atomic decompositions, multiresolution techniques, Gabor functions, and Wigner distributions are among the signal processing techniques which have or may be applied to problems in optics. Research aimed at solving such problems at the intersection of wave optics and signal processing promises not only to facilitate the development of 3DTV systems, but also to contribute to fundamental advances in optics and signal processing theory. © 2007 IEEE

    Nonlinear Transformation of Differential Equations into Phase Space

    Get PDF
    Time-frequency representations transform a one-dimensional function into a two-dimensional function in the phase-space of time and frequency. The transformation to accomplish is a nonlinear transformation and there are an infinite number of such transformations. We obtain the governing differential equation for any two-dimensional bilinear phase-space function for the case when the governing equation for the time function is an ordinary differential equation with constant coefficients. This connects the dynamical features of the problem directly to the phase-space function and it has a number of advantages

    On time-frequency analysis of heart rate variability

    Get PDF
    corecore