9 research outputs found

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    PV System Design and Performance

    Get PDF
    Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    Enhancing the bees algorithm using the traplining metaphor

    Get PDF
    This work aims to improve the performance of the Bees Algorithm (BA), particularly in terms of simplicity, accuracy, and convergence. Three improvements were made in this study as a result of bees’ traplining behaviour. The first improvement was the parameter reduction of the Bees Algorithm. This strategy recruits and assigns worker bees to exploit and explore all patches. Both searching processes are assigned using the Triangular Distribution Random Number Generator. The most promising patches have more workers and are subject to more exploitation than the less productive patches. This technique reduced the original parameters into two parameters. The results show that the Bi-BA is just as efficient as the basic BA, although it has fewer parameters. Following that, another improvement was proposed to increase the diversification performance of the Combinatorial Bees Algorithm (CBA). The technique employs a novel constructive heuristic that considers the distance and the turning angle of the bees’ flight. When foraging for honey, bees generally avoid making a sharp turn. By including this turning angle as the second consideration, it can control CBA’s initial solution diversity. Third, the CBA is strengthened to enable an intensification strategy that avoids falling into a local optima trap. The approach is based on the behaviour of bees when confronted with threats. They will keep away from re-visiting those flowers during the next bout for reasons like predators, rivals, or honey run out. The approach will remove temporarily threatened flowers from the whole tour, eliminating the sharp turn, and reintroduces them again to the habitual tour’s nearest edge. The technique could effectively achieve an equilibrium between exploration and exploitation mechanisms. The results show that the strategy is very competitive compared to other population-based nature-inspired algorithms. Finally, the enhanced Bees Algorithms are demonstrated on two real-world engineering problems, namely, Printed Circuit Board insertion sequencing and vehicles routing problem

    Optimization Methods Applied to Power Systems â…ˇ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore